

TRANSMITTAL

Suite 1400 - 750 West Pender Street

Vancouver, BC V6C 2T8

Tel: 604.685.0543 Fax: 604.685.0147

TO:

Mount Polley Mining Corporation

P.O. Box 12

Likely, BC V0L 1N0

DATE:

July 17, 2009

FILE NO.:

VA101-1/23-A.01

ATTENTION: Mr. Ron Martel

CONT. NO.:

VA09-01040

RE: Stage 6 TSF Construction

ITEM NO.	DESCRIPTION	ON
1.	4 Copies (Copy No.'s 1 – 4) – Report: MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE TAILINGS STORAGE FACILITY REPORT ON STAGE 6A CONSTRUCTION (REF. NO. VA101-1/23-1) Rev 0 July 10, 2009	

REMARKS:		
, , , , , , , , , , , , , , , , , , ,		

Signed:

Copy To: Al Hoffman (Ministry of Energy, Mines & Petroleum Resources) – 1 Copy (Copy No. 5) Don Parsons (Imperial Metals) - 1 Copy (Copy No. 6)

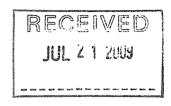
CIRIT# 4530

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

TAILINGS STORAGE FACILITY REPORT ON STAGE 6A CONSTRUCTION

PREPARED FOR

Mount Polley Mining Corporation P.O. Box 12 Likely, BC V0L 1N0


PREPARED BY

Knight Piésold Ltd.
Suite 1400 – 750 West Pender Street
Vancouver, BC V6C 2T8

VA101-1/23-1 Rev 0 July 10, 2009

Knight Piésold

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

TAILINGS STORAGE FACILITY REPORT ON STAGE 6A CONSTRUCTION (REF. NO. VA101-1/23-1)

Rev	Description	Date	Approved
0	Issued in Final	July 10, 2009	KB

MP00034

GRIT 4571

GULLAGO

Knight Piésold

Knight Piésold Ltd.

Suite 1400 750 West Pender Street Vancouver, British Columbia Canada V6C 2T8

Telephone: 604.685.0543 Facsimile: 604.685.0147 E-mail: kpl@knightpiesold.com

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

TAILINGS STORAGE FACILITY REPORT ON STAGE 6A CONSTRUCTION (REF. NO. VA101-1/23-1)

EXECUTIVE SUMMARY

The Mount Polley Mine is owned by Mount Polley Mining Corporation (MPMC). It is located 56 kilometers northeast of Williams Lake, in central British Columbia. Mount Polley Mine started production in 1997 and had milled approximately 27.5 million tonnes of ore prior to stopping production in October 2001. Mount Polley Mine upgrading the mine facilities in the second half of 2004 and started production again in March 2005.

The current mill throughput is approximately 20,000 tpd with the tailings material deposited as slurry in the Tailings Storage Facility (TSF). There was an estimated 50 mt of tailings deposited in the TSF at the end of 2008. The Mount Polley Mine TSF consists of three embankments; the Main Embankment, Perimeter Embankment, and the South Embankment. The Stage 6a construction program called for raising the embankments by 3 m to an elevation of 954 m.

The Stage 6a TSF construction program at Mount Polley Mine commenced in May 2008 and was completed in October of 2008. Earthworks for the Stage 6a Tailings Storage Facility construction program comprised the following zones and materials:

- Zone S: Fine grained glacial till.
- Zone U: Upstream shell zone produced from coarse tailings in sand cells, or from hauling sand from a local borrow area.
- Zone F: Filter, drainage zones, and chimney drain processed gravel and sand.
- Zone T: Transition filter zone select well-graded fine-grained rockfill.
- Zone C: Downstream shell zone rockfill.
- Zone FT: Filter layer above the downstream foundation till- sand from local borrow.
- Zones S, F and T were raised to 954 m, Zones C and U vary in elevation around the embankment between 951.3 and 954 m.

The results of the technical supervision and QA/QC testwork indicate that the fill materials placed and compacted on the tailings embankments were within the required material specifications and were in accordance with the Stage 6a design of the TSF.

A total of five new piezometers were installed during the Stage 6a construction program; the total number of functioning piezometers at the TSF is 68. The results of the instrumentation monitoring show that no unexpected or anomalous pore pressures have developed.

No new inclinometers were installed during Stage 6a. There are currently four operating inclinometers at the Main Embankment. There have been no significant deviations in any of the inclinometer casings installed. However, inclinometer SI01-02 is showing slight deviations at an approximate depth of 10 m

below original ground in the lacustrine silts. This is being closely monitored by MPMC and Knight Piésold. Recommended action involves increasing the monitoring frequency of the inclinometers and increasing the current buttress elevation at the Main Embankment.

The monitoring frequency of the vibrating wire piezometers and inclinometers was completed as outlined in the Operations and Maintenance Manual. The tailings pond elevation is monitored on a weekly basis to ensure that the stormwater and freeboard requirements are maintained during operations.

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

TAILINGS STORAGE FACILITY REPORT ON STAGE 6A CONSTRUCTION (REF. NO. VA101-1/23-1)

TABLE OF CONTENTS

			PAGE
EXECUTI	VE SUM	MMARY	1
TABLE O	F CONT	ENTS	i
SECTION	I 1.0 - IN	ITRODUCTION	1
1.1	PROJ	JECT DESCRIPTION	
1.2	SCOF	PE OF THE REPORT	1
SECTION	1 2.0 - ST	TAGE 6A CONSTRUCTION REPORT	2
2.1		ERAL	
2.2	TAILI	NGS STORAGE FACILITY COMPONENTS	2
2.3	QUAL	LITY ASSURANCE/QUALITY CONTROL	3
2.4	STAG	GE 6A EARTHWORKS	,3
	2.4.1	General	3
	2.4.2	Zone S	4
	2.4.3	Zone U	5
	2.4.4	Zone F	5
	2.4.5	Zone T	6
	2.4.6	Zone C	6
	2.4.7	Zone FT	6
2.5	INSTF	RUMENTATION AND MONITORING	7
	2.5.1	Vibrating Wire Piezometers	7
	2.5.2	Slope Inclinometers	9
	2.5.3	Survey Monument Data	9
	2.5.4	Drain Flow Data	9
2.6	DESIG	GN MODIFICATIONS	10
2.7	WATE	ER MANAGEMENT	10
SECTION	3.0 - SI	TE INVESTIGATION PROGRAMS	11
SECTION	4.0 - SL	JMMARY AND RECOMMENDATIONS	12
SECTION	5.0 - CE	ERTIFICATION	13

TABLES

Table 2.1 Rev 0	Stage 6A Construction Program – Zone S Control Samples – Summary
Table 2.2 Rev 0	Stage 6A Construction Program – Zone S Record Samples – Summary
Table 2.3 Rev 0	Stage 6A Construction Program – Zone U Record Samples – Summary
Table 2.4 Rev 0	Tailings Storage Facility – Main Embankment Foundation Piezometers
Table 3.1 Rev 0	Borrow Area Site Investigation - Drillhole Summary

FIGURES

Figure 2.1 Rev 0	Zone S Control Samples – Particle Size Analysis
Figure 2.2 Rev 0	Zone S Record Samples – Particle Size Analysis
Figure 2.3 Rev 0	Zone S Record Tests – Field Dry Density
Figure 2.4 Rev 0	Zone S Record Tests – Percent Compaction
Figure 2.5 Rev 0	Zone S Record Tests – Field Moisture Content
Figure 2.6 Rev 0	Zone S Record Tests – Deviation from Optimum Moisture Content
Figure 2.7 Rev 0	Zone U Record Samples – Particle Size Analysis
Figure 2.8 Rev 0	Zone F Control Samples – Particle Size Analysis
Figure 2.9 Rev 0	Zone F Record Samples – Particle Size Analysis
Figure 2.10 Rev 0	Zone T Record Samples – Particle Size Analysis
Figure 2.11 Rev 0	Upstream Toe Drain Flows
Figure 2.12 Rev 0	Foundation Drain Flows
Figure 3.1 Rev 0	Borrow Area Site Investigation – Borehole Locations
Figure 3.2 Rev 0	Borrow Area Site Investigation – Borrow Area Section 1
Figure 3.3 Rev 0	Borrow Area Site Investigation – Borrow Area Section 2
Figure 3.4 Rev 0	Borrow Area Site Investigation – Borrow Area Section 3

DRAWINGS

VA101-1/18-100 Rev 1	Stage 6a Tailings Embankment – Overall Site Plan
VA101-1/18-102 Rev 1	Stage 6a Tailings Embankment – General Arrangement
VA101-1/18-104 Rev 2	Stage 6a Tailings Embankment – Material Specifications
VA101-1/18-210 Rev 2	Stage 6a Main Embankment – Plan
VA101-1/18-215 Rev 2	Stage 6a Main Embankment – Section
VA101-1/18-216 Rev 1	Stage 6a Main Embankment – Detail
VA101-1/18-220 Rev 2	Stage 6a Perimeter Embankment – Plan
VA101-1/18-225 Rev 2	Stage 6a Perimeter Embankment – Section
VA101-1/18-226 Rev 1	Stage 6a Perimeter Embankment – Detail
VA101-1/18-230 Rev 2	Stage 6a South Embankment – Plan
VA101-1/18-235 Rev 2	Stage 6a South Embankment – Section 1
VA101-1/18-236 Rev 1	Stage 6a South Embankment – Section 2
VA101-1/18-240 Rev 2	Stage 6a – South Embankment – Upstream Toe Drain Sections and Details
VA101-1/18-255 Rev 0	Stage 6a – Instrumentation – Plan View of Piezometer Planes
VA101-1/18-256 Rev 0	Stage 6a – Instrumentation – Main Embankment Planes A and B

VA101-1/18-257 Rev 1 Stage 6a - Instrumentation - Main Embankment Planes C and E

VA101-1/18-258 Rev 1 Stage 6a - Instrumentation - Perimeter Embankment Planes D, G and H

VA101-1/18-259 Rev 1 Stage 6a - Instrumentation - South Embankment Planes F and I

APPENDICES

APPENDIX A Laboratory Test Results

A1 Zone S ControlA2 Zone S RecordA3 Zone U RecordA4 Zone F Record

A5 Zone T Record

APPENDIX B Nuclear Densometer Results

B1 Zone S Record

B2 Zone U Record

APPENDIX C Piezometer Figures

C1 Tailings PiezometersC2 Foundation Piezometers

C3 Fill Piezometers
C4 Drain Piezometers

APPENDIX D Inclinometer Data

APPENDIX E Photographs

APPENDIX F Site Investigation Drill Logs

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

TAILINGS STORAGE FACILITY REPORT ON STAGE 6A CONSTRUCTION (REF. NO. VA101-1/23-1)

SECTION 1.0 - INTRODUCTION

1.1 PROJECT DESCRIPTION

The Mount Polley Mine is owned by Mount Polley Mining Corporation (MPMC). It is located 56 kilometers northeast of Williams Lake, in central British Columbia. The project site is accessible by paved road from Williams Lake to Morehead Lake and then by gravel road for the final 12 km. Mount Polley Mine started production in 1997 and had milled approximately 27.5 million tonnes of ore prior to stopping production in October 2001. Mount Polley Mine upgrading the mine facilities in the second half of 2004 and started production again in March 2005.

The resource at Mount Polley Mine is developed using open pit mining methods, with the Bell Pit, Springer Pit, Wight Pit, and the Southeast Zone being mined or developed in 2008. The mining of the Bell Pit was completed in September 2008. The tailings material is deposited as slurry into the Tailings Storage Facility (TSF). The process water is reclaimed from the supernatant pond where it is pumped back to the mill for recycle in the milling process. MPMC had milled approximately 50 million tonnes as of the end of 2008. The mine throughput is approximately 20,000 tpd. An overall site plan of the Mount Polley Mine is shown on Drawing 100. The general arrangement of the TSF is shown on Drawing 102.

1.2 SCOPE OF THE REPORT

This report documents the Stage 6a construction program for the TSF, which involved raising the crest of the TSF embankments to an elevation of 954 m, an increase of 3 m from the previous Stage 5 elevation of 951 m. The report includes a discussion of the construction methods used to complete the work, the results of quality assurance tests, and a review of the instrumentation monitoring results. The report also includes a set of "As -Built" drawings corresponding to the Stage 6a construction program.

SECTION 2.0 - STAGE 6A CONSTRUCTION REPORT

2.1 GENERAL

The TSF at Mount Polley includes the Main, Perimeter and South Embankments. The Stage 6a construction program involved raising the TSF embankments to an elevation of 954 m, an increase in 3 m from the Stage 5 crest elevation of 951 m. The heights of the TSF embankments corresponding to a crest elevation of 954 m are approximately 41 m, 23 m, and 13 m for the Main, Perimeter and South Embankments, respectively. The TSF Stage 6a plan, material specifications, and sections for the Main, Perimeter, and South Embankments are shown on the following drawings:

•	VA101-1/18-210 Rev 2:	Stage 6 Main Embankment - Plan
•	VA101-1/18-215 Rev 2:	Stage 6 Main Embankment – Section
•	VA101-1/18-216 Rev 1:	Stage 6 Main Embankment – Detail
•	VA101-1/18-220 Rev 2:	Stage 6 Perimeter Embankment – Plan
•	VA101-1/18-225 Rev 2:	Stage 6 Perimeter Embankment – Section
•	VA101-1/18-226 Rev 1:	Stage 6 Perimeter Embankment – Detail
•	VA101-1/18-230 Rev 2:	Stage 6 South Embankment – Plan
•	VA101-1/18-235 Rev 2:	Stage 6 South Embankment – Section 1, and
•	VA101-1/18-236 Rev 1:	Stage 6 South Embankment – Section 2.

The Stage 6a construction program began in May 2008 and was completed in late October 2008. Select photographs of the construction program are included in Appendix E. Zones S, F and T were raised to an elevation of 954 along the entire length of the dam. The elevation of Zones U and C vary from 951.3 to 954 along the embankment.

2.2 TAILINGS STORAGE FACILITY COMPONENTS

borrow area.

The TSF consists of the following main components:

 The TSF embankments, which incorporate the following zones a 	and materials:
--	----------------

0	Zone S:	Core zone – fine grained low permeability glacial till.
0	Zone U:	Upstream shell zone – produced from coarse tailings in sand cells, or from
		hauling sand from a local borrow area.
0	Zone F:	Filter, drainage zones, and chimney drain – processed sand and gravel. The
		Zone F material has a filter relationship with the Zone S material.
0	Zone T:	Transition filter zone – select well-graded fine-grained rockfill. The Zone T
		material has a filter relationship with the Zone F material.
0	Zone C:	Downstream shell zone – rockfill.
0	Zone CBL:	Coarse Bearing Layer – rockfill.
0	Zone FT:	Filter layer above the downstream foundation materials (till) – sand from local

A low permeability basin liner (natural and constructed), which covers the base of the entire facility, at
a nominal thickness of at least 2 m. The low permeability basin liner has proven to be effective in
minimizing seepage from the TSF as there have been no indications of adverse water quality from the
TSF reporting to the groundwater monitoring wells (refer to Annual Reclamation Report for details).

- Embankment drainage provisions, which include foundation drains, upstream toe drains, and chimney, longitudinal and outlet drains. The embankment drains have been incorporated into the design of the TSF to facilitate drainage of the tailings mass, dewater the foundation soils, and to control the phreatic surface within the embankments.
- Seepage collection ponds located downstream of the Embankments. These ponds were excavated in low permeability soils and temporarily store water collected from the embankment drains and from local runoff.
- Instrumentation in the tailings, earthfill embankments, embankment foundations, and drains. This
 includes vibrating wire piezometers and slope inclinometers.
- A system of groundwater quality monitoring wells installed around the TSF.

2.3 QUALITY ASSURANCE/QUALITY CONTROL

Knight Piésold provided the Stage 6a design for the Tailings Embankments, prepared the Technical Specifications, provided technical assistance, and performed Quality Assurance/Quality Control (QA/QC) testing during the construction program. Key items addressed by Knight Piésold included:

- Foundation inspection and approval prior to fill placement
- Assessment of borrow material suitability
- · Inspection of fill placement procedures
- In-situ testing of placed and compacted fill for moisture content and density
- Collection and testing of Control and Record samples, and
- Instrumentation monitoring.

Knight Piésold worked under the overall management and administration of MPMC. Lake Excavating Ltd. and MPMC completed the construction work at the TSF. The QA/QC procedures followed by Knight Piésold were similar to previous construction programs at the TSF. Control and Record samples were collected for laboratory testing during the construction program. The Control tests were carried out on materials collected from the borrow areas or from source locations to determine their suitability for use in the construction. Record tests were performed on materials after placement and compaction to document the level of workmanship achieved and to ensure that the design objectives were met. The Control and Record laboratory test results are presented in Appendix A.

2.4 STAGE 6A EARTHWORKS

2.4.1 General

Earthworks for the Stage 6a Tailings Storage Facility construction program comprised the following zones:

- Zone S
- Zone U
- Zone F
- Zone T
- Zone C, and
- Zone FT.

The fill materials are discussed in the following sections, and the material specifications are shown on Drawing 104.

2.4.2 Zone S

The Zone S material, which is used for the core zone for the TSF Embankments, is comprised of a locally borrowed, low permeability glacial till. The Zone S material for the Stage 6a construction program was sourced from Borrow Area 3, located downstream of the Main Embankment, and from a newly developed borrow located downstream of the Perimeter Embankment. The location of the borrow areas is shown on Drawings 102 and 220. The Control test results for the Zone S material are presented in Appendix A1 and summarized on Table 2.1. The results of the Control test particle size analyses on the Zone S material are shown on Figure 2.1.

The Zone S material was placed in maximum 300 mm thick horizontal lifts and compacted with a 10-tonne vibratory smooth drum. The compaction specification was 95 percent of the Standard Proctor Maximum Dry Density. Each lift of Zone S was tested and approved prior to the placement of the subsequent lift. Areas that failed to meet the compaction requirements were re-compacted until the minimum compaction requirements were met. Material that did not meet the compaction requirements was removed from the embankment by pushing the unsuitable material upstream of the crest onto the tailings beach with a dozer.

Record tests on the compacted Zone S fill included the following:

- Moisture Content (ASTM D2216)
- Particle Size Distribution (ASTM D422)
- Laboratory Compaction (ASTM D698)
- Atterberg Limits (ASTM D4318)
- · Field Density by Nuclear Methods (ASTM D2922), and
- Field Moisture Content by Nuclear Methods (ASTM D3017).

A total of nine Zone S Record samples were collected and tested during the Stage 6a construction program. The Record test results indicate that the well graded Zone S material is typically comprised of silt and sand with some gravel and some clay. The Record test results for the Zone S material are presented in Appendix A1 and summarized in Table 2.2. The gradation curves of the Zone S Record tests are shown on Figure 2.2. The moisture content of the Record Samples ranged from 8.9 to 13.6 percent, with an average of 10.7 percent. The Standard Proctor Maximum Dry Density ranged from 2,070 to 2,150 kg/m³, with an average of 2,096 kg/m³. The plastic limits ranged from 14.1 to 19.1 percent, with an average of 15.8 percent. The liquid limits ranged from 18.3 to 27.2 percent, with an average of 22.5 percent. The plasticity index ranged from 3.7 to 8.5 percent, with an average of 6.7 percent. The Zone S Record test results indicate that the Zone S material was within the specified limits for the material and was also consistent with the Zone S materials used in all previous construction programs.

An additional 1170 field density and moisture content tests were performed on the Zone S material using a nuclear densometer to assess the compacted density and moisture content. The compacted dry density ranged from 1990 to 2,244 kg/m³, with an average of 2,059 kg/m³. The

compacted moisture content ranged from 5.2 to 14.2%, with an average of 10.0%. The percent compaction, as compared to the average Standard Proctor Maximum Dry Density from the Control Record testwork, ranged from 95.0 to 107.1%, with an average of 98.1%. The compacted dry density results are shown on Figure 2.3, with the percent compaction results shown on Figure 2.4. The compacted moisture content results are shown on Figure 2.5, with the deviation from the average Standard Proctor Optimum Moisture Content results from the Control and Record testwork shown on Figure 2.6. The nuclear densometer results are presented in Appendix B.

2.4.3 Zone U

Zone U forms the upstream shell zone immediately adjacent to the Zone S core zone and provides the upstream support of the Zone S material required for modified centerline construction. Zone U was principally constructed using sand cells along the embankments. The sand cell construction process involved discharging tailings into cells constructed upstream of the embankment. The cells contained confining berms that had discharge culverts installed to allow for the water and the fine materials to exit the cells and flow into the TSF. The coarse tailings sand that settled out into the cells was constantly worked with a specialized dozer to distribute the tailings within the cells, to compact the sand, and to expedite the drainage of excess water through the culverts. Photographs showing the construction of the sand cells are included in Appendix E.

Lab testing was performed on three Zone U record samples to determine Particle Size Distributions (ASTM D422) and Maximum Dry Densities. The lab results are included in Appendix A3 and are summarized in Table 2.3. The Record tests were performed on Zone U material placed using the sand cell construction method. The results show that the Zone U material produced using the sand cell construction method was predominantly comprised of fine sand, with 17 to 45% fines. The gradation curves of the Zone U Record Tests are shown on Figure 2.7.

The Maximum Dry Densities of the Zone U Record Samples ranged from 1,660 to 1,690 kg/m³. Material specifications required that the Zone U material be compacted to 95% of the Maximum Dry Density, or approximately 1,600 kg/m³. Nuclear densometer tests performed on the Zone U material at various stages and elevations showed that the 95% compaction requirement was achieved for the Zone U material. The results of the nuclear densometer testing are included in Appendix B2. The compacted dry density ranged from 1,657 to 1,987 kg/m³, with an average of 1,792 kg/m³.

2.4.4 Zone F

The Zone F material forms the filter zone immediately downstream of Zone S core zone on all of the Embankments. The material used in Zone F was mine waste rock that was processed at the mill site using the primary crusher.

Zone F material was placed in maximum 600 mm thick lifts and was compacted with a ten tonne vibrating smooth drum.

Control and Record samples were collected and tested for Particle Size Analyses. A total of 10 control and 58 record tests were performed on Zone F samples during the Stage 6a construction program. The results of the Control and Record tests are shown in Figures 2.8 and 2.9 respectively. The Zone F material is typically comprised of sand and fine gravel, with trace (<10%) fines. A total of 6 of the 58 Record samples and 1 of the 10 Control samples were slightly coarser than specified for this material. This was not unexpected as the Zone F material is very sensitive to sampling method. Test results indicating that a small fraction of the material is slightly coarser than the specified limit have also been observed in previous construction programs where additional samples collected from stockpiles that appeared to be slightly coarse based on initial testing were found to be within the specified limits after further sampling and testwork was completed.

2.4.5 Zone T

Zone T is a transition zone immediately downstream of Zone F. The material used in Zone T was select rock fill from the Wight and Springer Pits. The waste rock was screened to remove the plus six-inch material prior to placement in the embankment. Zone T was placed in maximum 600 mm thick lifts and compacted with a ten tonne vibrating smooth drum roller.

A total of 32 Record Particle Size Analyses were performed during Stage 6a, and the results of these tests are shown in Figure 2.10. The Zone T material is typically comprised of gravel, with some sand and cobbles and trace (<10%) fines. All of the Zone T record test results fell inside the specified limits.

2.4.6 Zone C

Zone C forms the downstream shell zone of the embankments and is immediately downstream of Zone T. The Zone C material provides structural stability for the embankments as well as a large, trafficable surface for haul trucks to drive upon. It was comprised of coarse rock from the Wight and Springer Pit and Zone C, which was placed in maximum 2 m thick lifts and compacted with selective routing of the various trucks and construction equipment. No Particle Size Analyses were performed on Zone C material. The Zone C slope at the end of Stage 6a varied for each embankment, but on average was 1.4H:1V. Drawings 216 and 215 show that on both the Main and South Embankments the Zone C was overbuilt during the Stage 6a construction program. This will need to be carefully monitored during future construction programs so as to not adversely affect the overall cost of the TSF.

2.4.7 Zone FT

Zone FT material was placed on the prepared and approved original ground surface downstream of the embankments beneath the shell zone. Zone FT provides a filter relationship with the in-situ glacial till in the downstream foundations and provides a horizontal path for any seepage to drain freely. Zone F material meets the Zone FT particle size specifications and thus was used throughout the Stage 6a construction program.

Zone FT was placed in maximum 300 mm thick lifts and was compacted with a ten tonne vibrating drum roller.

2.5 <u>INSTRUMENTATION AND MONITORING</u>

2.5.1 Vibrating Wire Piezometers

2.5.1.1 General

Vibrating wire piezometers have been installed at the TSF along nine planes, designated as monitoring planes A to I. Monitoring planes A, B, C and E are located at the Main Embankment, monitoring planes D, G, and H are located at the Perimeter Embankment, and monitoring planes F and I are located at the South Embankment. A plan view of the piezometer planes is shown on Drawing 255, and they are shown in section on Drawings 256, 257, 258, and 259. The piezometers are grouped into tailings, foundation, fill and drain piezometers. The piezometers were read on a weekly basis during the Stage 6a construction program as defined in the Operation, Maintenance and Surveillance Manual. The results from each piezometer group are discussed below. The timeline plots for the piezometers are presented in Appendix C.

There are currently two gaps in the piezometer data. The first gap, which was from July 30, 2003 to September 2, 2004, was during the Care and Maintenance Period. This data was collected by MPMC but was accidently misplaced. The second gap occurred from September 22, 2005 to April 30, 2006 and was due to a malfunctioning readout box connecter cable and the accidental destruction or burying of piezometer cables during the Stage 4 construction program.

The following actions were implemented during the Stage 6a construction program to protect the piezometers.

- Steel protective covers were set-up to shield the piezometer readout boxes.
- The new piezometers that had not been extended to the read-out boxes were coiled and placed in five-gallon buckets. The locations were marked with large poles with fluorescent markings.

These measures proved to be effective as no piezometers were destroyed during the Stage 6a construction program. Photos of the protective covers and poles are found in Appendix E.

2.5.1.2 Tailings Piezometers

There are currently 14 functioning tailings piezometers, including three new piezometers installed in the tailings mass during the Stage 6a construction program. The tailings piezometers are typically installed close to the embankments and the pore pressures are sensitive to the location of the tailings pond in relation to the embankments. The pore pressures observed in the tailings piezometers at the Main Embankment have shown slight fluctuations during the Stage 6a construction program in response to the

development of the tailings beach and the subsequent re-location of the tailings pond away from the embankment. Timeline plots of the tailings piezometer data are included in Appendix C1.

2.5.1.3 Embankment Foundation Piezometers

There are currently 12 functioning embankment foundation piezometers. No additional embankment foundation piezometers were installed during the Stage 6a construction program. Artesian conditions are present in 3 of the 9 functioning foundation piezometers installed under the Main Embankment. Artesian conditions have previously been identified in the foundation of the Main Embankment and the piezometers installed in this area are used to confirm that pore pressures remain below the design threshold level of 6 metres above ground level (KP Ref. No. 1162/7-2). No unexpected high pore pressure increases were noted during the Stage 6a construction program with the artesian pressures ranging from surface to 3.37 m above ground. The artesian head values (above ground surface level) measured in September 2008 are shown on Table 2.4.

Timeline plots of the embankment foundation piezometers are included in Appendix C2. There are no concerns with the embankment foundation piezometers.

2.5.1.4 Embankment Fill Piezometers

There are currently 27 functioning embankment fill piezometers. No additional embankment fill piezometers were installed during the Stage 6a construction program. There have been no significant changes in the trends for most of the embankment fill piezometers. Piezometer A2-PE2-O3, which is located at the Main Embankment, showed a slight increase in pore pressures corresponding to fill placement during the Stage 6a construction program. This trend has been observed in the past with this piezometer and it is anticipated that the slightly elevated pore pressures will dissipate following the construction programs as they have previously.

Timeline plots of the embankment fill piezometer data are included in Appendix C3. There are no concerns with the embankment fill piezometers.

2.5.1.5 Drain Piezometers

There are currently 15 functioning drain piezometers, including two new piezometers installed during the Stage 6a construction program. The drain piezometers are installed in the foundation drains, chimney drain, upstream toe drains, and outlet drains.

The majority of the drain piezometers showed near-zero pore pressures, indicating that the drains are functioning as intended. Piezometer A1-PE1-04 showed an increase in pore pressures starting in approximately June 2006. This piezometer is located in the upstream toe drain at the Main Embankment and the increased pressures are a result of the tailings pond being in close proximity to the Main Embankment. The positive trend of the pore pressures coincides with the increased flow rates measured from the Main Embankment upstream toe drain. The pore pressures in piezometer A1-PE1-04 are

expected to dissipate once the tailings beach has been established in this area and the pond is located away from the embankment.

Timeline plots for the drain piezometers are shown in Appendix C4. There are no concerns with the embankment drain piezometers.

2.5.2 Slope Inclinometers

There are currently four functioning inclinometers installed downstream of the toe of the Main Embankment. No new inclinometers were installed during the Stage 6a construction program.

The results of the inclinometer readings indicate that there have not been any significant deviations measured in three of the inclinometers since their installation. However, inclinometer SI01-02 is showing slight deviations at an approximate depth of 10 m below original ground level in the lacustrine silts. This is being closely monitored by MPMC and Knight Piésold. Recommended action involves increasing the monitoring frequency of the inclinometers and increasing the current buttress elevation at the Main Embankment. Additional inclinometers may be installed to ensure a continuous record is maintained in the event that the current inclinometers are damaged while the buttress is expanded. The inclinometer data is presented in Appendix D.

2.5.3 Survey Monument Data

There are currently no survey monuments installed on the TSF embankment crests due to the ongoing construction of the TSF embankments.

2.5.4 Drain Flow Data

The upstream toe drain and foundation drains at the Main Embankment flow into the sump at the Main Embankment Seepage Collection Pond where the flows are measured. The upstream toe drain at the Perimeter Embankment drains into the Perimeter Embankment Seepage Collection Pond via a ditch. The flow rates are currently measured at the end of each of the pipes which exits into the concrete sump.

The Stage 6 design of the TSF includes the installation of an upstream toe drain at the South Embankment. The concrete encasement was installed as part of the Stage 6a construction program; the upstream toe drain will be completed in 2009. The lab results for the concrete strength testing are included in Appendix A6.

The water from the foundation drains and upstream toe drains is pumped back into the TSF. The flow rates for the Main and Perimeter Embankment upstream toe drains are shown on Figure 2.11. The flow rates for the foundation drains shown on Figure 2.12. The flows from the upstream toe drains fluctuate in response to the tailings deposition location and the tailings pond location. The flow from the Main Embankment upstream toe drain are typically in the range of 10 to 12 l/s with the flows from the Perimeter Embankment upstream toe drain being

approximately 3 l/s in September 2008. The flows from the upstream toe drains have remained relatively constant, with the total flow increasing due to the commissioning of the Perimeter Embankment upstream toe drain. The water flowing from the upstream toe drains was clear throughout the Stage 6a construction program.

The flows from foundation drains FD-1 to FD-5 at the Maine Embankment remained fairly constant during the Stage 6a construction program at less than 1 l/s. The flows from the foundation drains were clear. The flows at the ME Corner foundation drain have decreased due to the development of a tailings beach in this area and are typically less than 1 l/s.

Samples from the foundation and the upstream toe drains are collected by MPMC for water quality testing. The results are available from MPMC and are reported in the Annual Environmental Reports.

2.6 DESIGN MODIFICATIONS

Knight Piésold Ltd. employs a strict procedure for making design modifications (changes or substitutions) in the field. All design change requests are submitted in writing by the Resident Engineer to the Knight Piésold Ltd. Vancouver Office for review and evaluation.

The design modifications for the Stage 6a construction program included the following:

The configuration of the Zone S, Zone F and Zone T was modified at the request of MPMC. The approved design is shown on Drawings and involves constructing the filter zones at a flatter slope to facilitate the placement of the filter materials downstream of the Zone S material. The design filter gradation requirements for the embankments were not affected by the design change.

2.7 WATER MANAGEMENT

The TSF is required to have sufficient live storage capacity for containment of storm water runoff from the 72-hour PMP volume of approximately 1,100,000 m³ at all times. The 72-hour PMP allowance is in addition to regular inflows from other precipitation runoff, including the spring freshet. The runoff from the waste dumps is currently being routed to the Perimeter Embankment Seepage Collection Pond via a ditch constructed in 2008. Water from the Perimeter Embankment Seepage Collection Pond is then pumped to the TSF. The total freeboard requirement for the TSF is approximately 1.4 m. The tailings pond elevation is monitored on a regular basis to ensure that the stormwater and freeboard requirements are not infringed upon during operations.

SECTION 3.0 - SITE INVESTIGATION PROGRAMS

A drilling program was conducted in May 2008 at the Mount Polley Mine to investigate a potential borrow area located downstream of the Perimeter Embankment. A sonic drill rig operated by the Mud Bay Drilling Company was contracted to conduct the overburden drilling and 11 holes were completed across the borrow area. A Knight Piésold engineer was on site to log and sample the overburden.

The sonic drill rig utilizes high frequency sonic vibrations to "cut" through overburden and rock without requiring the use of water for cooling the drill bits or to facilitate the movement of drill rods through the overburden. This style of drilling allows for continuous overburden coring with near 100% recovery.

Eleven drillholes spaced approximately 200 m apart were completed to depths of 11 m to 24 m. A summary of the drillholes is shown on Table 3.1. The location of the drillholes is shown on Figure 3.1.

Three main soil units were identified in the proposed borrow area:

Glacial Till:

The glacial till is generally comprised of sandy silt to silty sand, with trace to some clay and trace to some gravel. The till is typically moist, very dense, highly plastic, poorly sorted and massive. The till varies in colour from brown to grey-brown to grey. The till is a suitable construction material for the embankment Zone S core.

· Sand and Gravel:

Well sorted sand and gravel that has low plasticity, is very compact and dry.

Lacustrine Sediments:

The lacustrine sediments typically occur as poorly sorted fine sands and silts with trace clay.
They have low to moderate plasticity and are typically moist to wet, very dense and massive. The
lacustrine sediments occurred as thin lenses within the till units, or as thick deposits underlying
the till.

The overburden logs for each drillhole are included in Appendix F.

Geologic sections of the borrow area located downstream of the Perimeter Embankment are shown on Figures 3.2 to 3.4.

SECTION 4.0 - SUMMARY AND RECOMMENDATIONS

Stage 6a of the Mount Polley Mine Tailings Storage Facility was constructed between May 2008 and October 2008. The Stage 6a construction program involved raising the TSF embankments to an elevation of 954 m, a 3 m increase in elevation from the Stage 5 crest of 951 m.

The Stage 6a construction program involved placing the following materials in the TSF Embankments.

- Zone S: Core zone fine grained glacial till.
- Zone U: Upstream shell zone produced from coarse tailings in sand cells, or from hauling sand from a local borrow area.
- Zone F: Filter, drainage zones, and chimney drain processed sand and gravel.
- Zone T: Transition filter zone select well-graded fine-grained rockfill.
- Zone C: Downstream shell zone rockfill.
- Zone FT: Filter layer above the downstream foundation till- sand from local borrow area.

Technical supervision of the work by Knight Piésold included QA/QC testing and monitoring the existing vibrating wire piezometers and inclinometers. The QA/QC component involved collecting and testing Record and Control samples, as well as testing the compacted fill materials using a nuclear densometer. The results of the QA/QC testwork indicate that the construction fill materials were placed and compacted within the required material specifications and were in accordance with the Stage 6a design of the TSF.

An additional five vibrating wire piezometers (VWP) were installed during the Stage 6a construction program, bringing the number of operating piezometers in the TSF to 68. The piezometers were measured on a weekly basis using a VWP Indicator readout box. The inclinometers were measured twice a month using a Slope Indicator inclinometer probe. The results of the instrumentation monitoring show that no unexpected or anomalous pore pressures were observed while monitoring the vibrating wire piezometers and there were no significant displacements measured in the inclinometers during the construction program. However, inclinometer Sl01-02 is showing slight deviations at an approximate depth of 10 m below ground in the lacustrine silts. This is being closely monitored by MPMC and Knight Piésold. Recommended action involves increasing the monitoring frequency of the inclinometers to weekly, expansion of the current buttress at the Main Embankment, and possibly installing additional inclinometers to ensure a continuous record is maintained in the event that the current inclinometers are damaged while the buttress is expanded.

Surplus site water is currently being stored in the Tailings Storage facility. The water management plan and water balance should be updated on a regular basis to remain current with the mine plan. Runoff from the waste dumps is currently being routed to the TSF, adding to the volume of water being stored in the TSF. The TSF is required to have sufficient live storage capacity for containment of storm water runoff from the 72-hour PMP volume of 1,070,000 m³ at all times. The 72-hour PMP allowance is in addition to regular inflows from other precipitation runoff, including the spring freshet. The total freeboard requirement for the TSF is approximately 1.4 m. The tailings pond elevation must continue to be monitored on a regular basis to ensure that the stormwater and freeboard requirements are not infringed upon during operations.

SECTION 5.0 - CERTIFICATION

This report was prepared, reviewed and approved by the undersigned.

Prepared:

Mark Smith, E.I.T. Staff Engineer

Reviewed:

Les Galbraith, P.Eng. Senior Engineer

Approved:

Ken Brouwer, P.Eng. Managing Director

This report was prepared by Knight Piésold Ltd. for the account of Mount Polley Mining Corporation. The material in it reflects Knight Piésold's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Knight Piésold Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions, based on this report. This numbered report is a controlled document. Any reproductions of this report are uncontrolled and may not be the most recent revision.

Knight Piésold

TABLE 2.1

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

STAGE 6A CONSTRUCTION PROGRAM ZONE S CONTROL SAMPLES - SUMMARY

Cloude	,	Attorborg I imite	9	3,00	150	Late Circo Dieta	(0/ D. 1.1.1.1	1001					Frint Jun/04/08 11:08:04
Sample ID		Arrei Dei B Lillin	8	M	ran	iicie Size Distr	Particle Size Distribution (%Passing)	ing)		Standard	Standard Proctor		MC
					Gravel	Sand	Silt	Clay	Uncorrected	Opt.	Corrected	Opt.	Deviation from
	1	7	ā.	M.C.	>#4	#4 to #200	#200 to 0.002	< 0.002	Max. D.D.	M.C	Max. D.D.	M.C	Optimum
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(kg/m3)	(%)	(kg/m3)	(%)	(%)
C-S6-ZS-01/08	19.1	14.0	5.1	10.8	21	31	42	9	2040	10.5	2140	8.5	2.3
C-S6-ZS-02/08	18.2	13.0	5.2	9.6	8	37	52	3	2040	10.0	2080	9.5	0.4
C-S6-ZS-03/08	23.0	13.9	9.1	11.0	12	28	38	17	2010	11.5	2070	10.5	0.5
C-S6-ZS-04/08	16.8	13.9	2.9	8.8	6	41	39	11	2050	10.0	2090	9.0	-0.2
C-S6-ZS-05/08	21.0	13.3	7.7	10.9	15	39	32	11	2020	9.5	2100	8.0	2.9
C-S6-ZS-06/08	24.0	16.7	7.3	9.5	25	37	26	12	2020	11.0	2160	8.5	1.0
C-S6-ZS-07/08	23.5	14.4	9.1	12.2	22	34	30	14	1900	13.0	2010	10.5	1.7
MEAN	20.8	14.2	6.6	10.4	16	35	37	11	2011	10.8	2093	9.2	1.2
MAXIMUM	24.0	16.7	9.1	12.2	25	41	52	17	2050	13.0	2160	10.5	2.9
MINIMUM	16.8	13.0	2.9	8.8	8	28	26	3	1900	9.5	2010	8.0	-0.2
011001700001701711	1	C 301(-30(F)3	ANALOGOPONICATION CONTRACTOR CONT		- 17 A T I G A T								

M:11101100001123\A\Data\S6a Field comp DwnId\S6a\F06 - Zone S Soil Testing\TABLE 2.1.xis\TABLE 2.1

DATE DESCRIPTION	JIM MACS
COLUMN CO	PREP'D CHK'D

TABLE 2.2

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

STAGE 6A CONSTRUCTION PROGRAM ZONE S RECORD SAMPLES - SUMMARY

!										***************************************			Print Jun/04/09 11:09:53
Sample ID		Atterberg Limits	S:	MC	Part	icle Size Distr	Particle Size Distribution (%Passing)	ng)		Standard	Standard Proctor		MC
					Gravel	Sand	Silt	Clay	Uncorrected	Opt.	Corrected	Opt.	Deviation from
	=	립	ā	M.C.	×#4	#4 to #200	#200 to 0.002	< 0.002	Max. D.D.	M.C	Max. D.D.	M.C	Optimum
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(kg/m3)	(%)	(kg/m3)	(%)	(%)
R-S6-ZS-01/08	21.4	14.4	7.0	9.8	13	32	39	16	2010	9.0	2080	8.0	1.8
R-S6-ZS-02/08	22.2	14.1	8.1	9.7	, 14	31	41	14	. 2000	11.0	2080	9.5	0.2
R-S6-ZS-03/08	25.8	19.1	6.7	11.6	22	28	40	10	1940	12.5	2070	10.0	1.6
R-S6-ZS-04/08	27.2	18.7	8.5	13.8	20	33	38	6	2030	11.0	2140	9.0	4.8
R-S6-ZS-05/08	18.3	14.6	3.7	8.9	11	38	37	14	2010	9.0	2070	8.0	6.0
R-S6-ZS-06/08	21.8	14.1	7.7	11.1	12	39	37	12	2010	11.0	2080	9.5	1.6
R-S6-ZS-07/08	22.3	16.1	6.2	10.7	25	31	39	5	2020	11.0	2150	8.5	2.2
R-S6-ZS-08/08	22.0	14.9	7.1	10.9	18	38	31	13	1990	11.0	2070	9.5	4.1
R-S6-ZS-09/08	21.5	16.0	5.5	10.2	16	36	37	11	2040	10.5	2120	9.0	1.2
MEAN	22.5	15.8	6.7	10.7	16.8	34.0	37.7	11.6	2006	10.7	2096	9.0	1.7
MAXIMUM	27.2	19.1	8.5	13.8	25.0	38.7	41.0	16.0	2040	12.5	2150	10.0	4.8
MINIMUM	18.3	14.1	3.7	8.9	11.0	28.0	31.0	5.0	1940	9.0	2070	8.0	0.2

M:\\1\01\00001\23\A\Data\S6a Field comp Dwnld\S6a\F06 - Zone S Soil Testing\TABLE 2.2.xIs\TABLE 2.2

Knight Piésold

TABLE 2.3

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

STAGE 6A CONSTRUCTION PROGRAM ZONE U RECORD SAMPLES - SUMMARY

					-								Print Jun/04/09 11:18:31
Sample ID	1	Atterberg Limits	(S	MC	Part	icle Size Distr	Particle Size Distribution (%Passing)	ing)		Standar	Standard Proctor		MC
					Gravel	Sand	Silt	Clay	Uncorrected	Opt.	Corrected	Opt.	Deviation from
	3	7	₫	M.C.	>#4	#4 to #200	#200 to 0.002	< 0.002	Max. D.D.	M.C	Max. D.D.	M.C	Optimum
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(kg/m3)	(%)	(kg/m3)	(%)	(%)
R-S6-ZU-01/08	N/A	N/A	N/A	N/A	0	83	17		N/A	N/A	N/A	N/A	N/A
R-S6-ZU-02/08	N/A	N/A	N/A	N/A	0	80	20		1690	16.0	N/A	N/A	N/A
R-S6-ZU-03/08	N/A	N/A	N/A	N/A	0	55	45		1660	17.0	N/A	N/A	N/A
MEAN	N/A	N/A	N/A	N/A	0	73	27		1675	16.5	N/A	N/A	N/A
MAXIMUM	N/A	N/A	N/A	N/A	0	83	45	2	1690	17.0	N/A	N/A	N/A
MINIMUM	N/A	N/A	N/A	N/A	0	55	17		1660	16.0	N/A	N/A	N/A
The state of the s		1 100	0., 0								-		

M:11101100001123IA\Data\S6a Field comp Dwnld\S6a\F07 - Zone FT, T, C, U Soil Testing\TABLE 2.3.xlsJTABLE 2.3

0	14APR'09	ISSUED WITH REPORT VA101-1/23-1	¥	MACS	5
REV	DATE	DESCRIPTION	PREP'D	CHKD	APP'D

TABLE 2.4

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY PROJECT

TAILINGS STORAGE FACILITY MAIN EMBANKMENT FOUNDATION PIEZOMETERS

Print Jun/04/09 11:22:03

	T		Sept 2008 Pressure	Sept 2008 Artesian
Piezometer	Piezometer Elevation	Surface Elevation	Elevation	Pressure
	(m)	(m)	(m)	(m)
A2-PE2-01	903.68	912.67	No Longer Functioning	-
A2-PE2-02	909.77	912.67	No Longer Functioning	-
A2-PE2-06	898.01	912.91	No Longer Functioning	-
A2-PE2-07	902.81	912.91	915.91	3.00
A2-PE2-08	907.56	913.36	912.49	-0.87
B2-PE1-03	914.05	915.55	915.55	0.00
B2-PE2-01	901.98	916.98	No Longer Functioning	-
B2-PE2-02	909.51	916.98	920.35	3.37
B2-PE2-06	914.59	916.89	No Longer Functioning	_
C2-PE1-03	912.59	-	No Longer Functioning	-
C2-PE2-02	910.53	915.71	916.64	0.93
C2-PE2-06	906.84	915.99	914.82	-1.17
C2-PE2-07	912.29	915.99	No Longer Functioning	-
C2-PE2-08	914.03	915.99	914.37	-1.62
D2-PE2-02	927.32	930.92	931.15	0.23
E2-PE2-01	914.21	918.81	917.19	-1.62
E2-PE2-02	909.66	918.81	916.48	-2.33

M:\1\01\00001\23\A\Data\S6a Field comp Dwnld\S6a\F09 - Piezometer Readings\[Table2.4.xls]Table 2.4

Ì	0	14APR'09	ISSUED WITH REPORT VA101-1/23-1	JIM	MACS	LJG
į	REV	DATE	DESCRIPTION	PREP'D	CHKD	APP'D

TABLE 3.1

MOUNT POLLEY MINING CORPORATION MOUNT POLLY MINE

BORROW AREA SITE INVESTIGATION DRILLHOLE SUMMARY

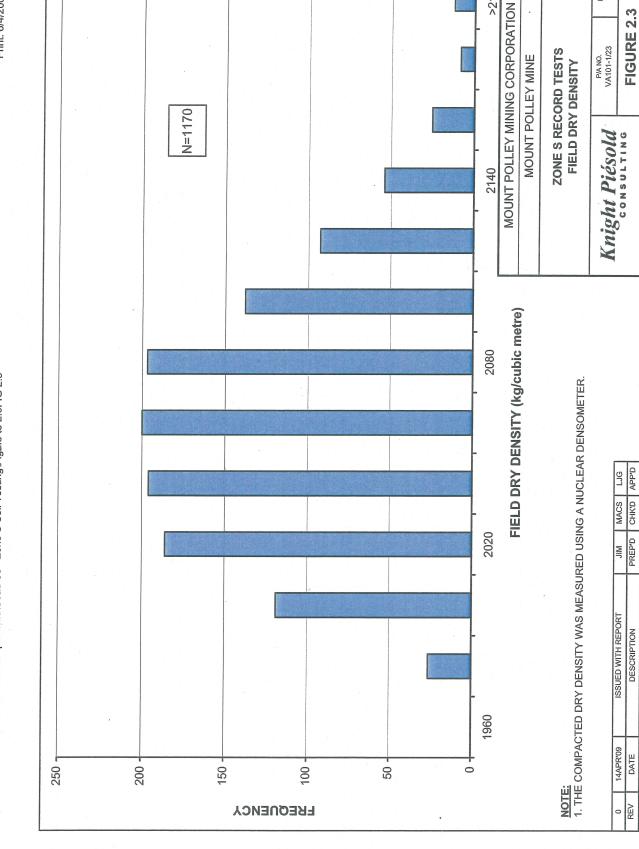
Print Jun/04/09 11:23:58

Hole ID	Northing	Easting	Elevation (m)	Depth (m)	Glacial Till Thickness (m)
KP08-01	5,819,445	595,951	935	19.2	19
KP08-02	5,819,292	596,125	935	14.6	10.4
KP08-04	5,819,414	596,269	920	20.7	15
KP08-06	5,819,131	596,297	937	13.1	5.2
KP08-08	5,819,276	596,451	918	17.7	11.6
KP08-09	5,819,617	596,070	921	14.6	8.5
KP08-11	5,819,744	595,835	924	8.5	-
KP08-12	5,819,605	595,741	933	23.8	12.8
KP08-14	5,819,739	595,544	931	20.1	>20
KP08-15	5,819,880	595,608	925	20.7	8.9
KP08-16	5,819,663	595,778	930	11.6	4.3

M:\1\01\00001\23\A\Data\Borrow Area Site Investigation - May 2008\[Table 1.0 r0 - Drillhole List.xls]Drillholes

NOTES:

1. TILL THICKNESSES ARE CUMULATIVE THICKNESSES FOR ALL TILL UNITS ENCOUNTERED IN THE HOLE.

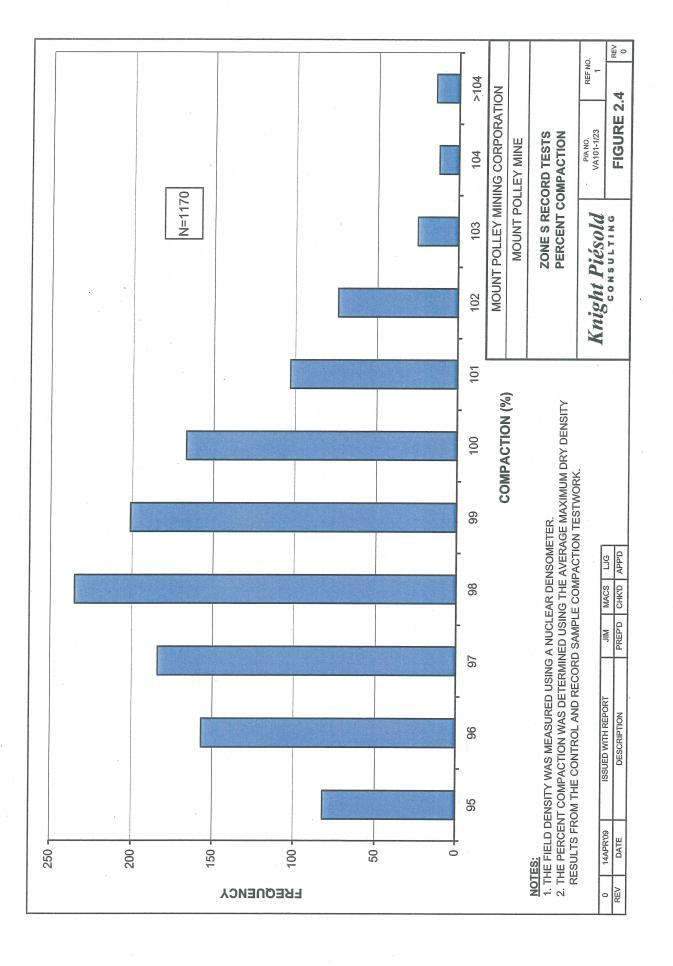

0	14APR'09	ISSUED WITH REPORT VA101-1/23-1	GM	MACS	LJG
DEV/	DATE	DESCRIPTION	PREPID	CHKID	APP'D

0.001 REF NO. CLAY MOUNT POLLEY MINING CORPORATION FIGURE 2.1 Fine ZONE S CONTROL SAMPLES PARTICLE SIZE ANALYSIS P/A NO. VA101-1/23 MOUNT POLLEY MINE Medium SILT Knight Piésold **FINE LIMIT** Coarse 0.1 #70 #100 Fine **GRAIN SIZE IN MILLIMETERS** US STANDARD SIEVE SIZES #8 #16 #40 Medium Coarse # MACS LJG CHK'D APP'D Fine 3/8 **COARSE LIMIT** 9 GRAVEL PREP'D Coarse SIEVE OPENING IN INCHES COBBLES 100 ISSUED WITH REPORT BOULDERS 1000 14APR'09 DATE 9 8 8 2 9 8 20 5 ဓ 2 PERCENT FINER BY WEIGHT

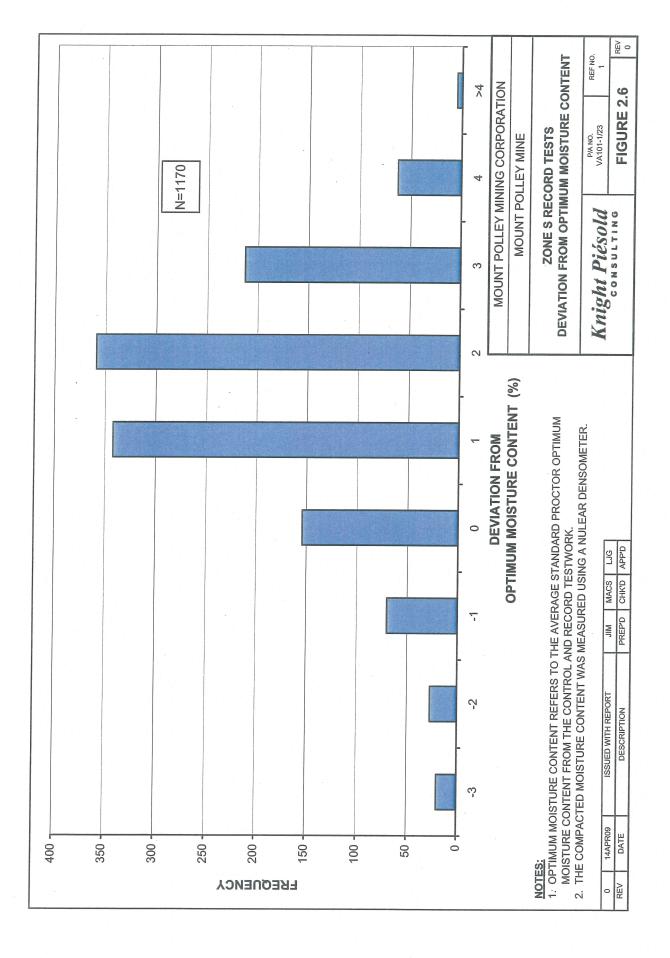
M:\1\01\00001\23\A\Data\S6a Field comp Dwnld\S6a\F06 - Zone S Soil Testing\PSA Fig 2.1 2.2

e R 0.001 REF NO. CLAY MOUNT POLLEY MINING CORPORATION FIGURE 2.2 ZONE S RECORD SAMPLES PARTICLE SIZE ANALYSIS Fine P/A NO. VA101-1/23 MOUNT POLLEY MINE 0.01 Medium SILT Knight Piésold **FINE LIMIT** Coarse #200 0.1 #70 #100 Fine **GRAIN SIZE IN MILLIMETERS** #40 US STANDARD SIEVE SIZES #8 #16 #4 SAND Medium Coarse # LJG APP'D Fine COARSE LIMIT 3/8 9 MACS GRAVEL MIC Coarse SIEVE OPENING IN INCHES 6 4 3 COBBLES 9 ISSUED WITH REPORT DESCRIPTION BOULDERS 7 1000 +0 14APR'09 DATE 100 8 8 2 8 20 6 8 20 9 PERCENT FINER BY WEIGHT Æ

M:\1\01\00001\23\A\Data\S6a Field comp DwnId\S6a\F06 - Zone S Soil Testing\PSA Fig 2.1 2.2


REV 0

REF NO.


>2180

M:\rvv1\00001\23\A\Data\S6a Field comp Dwnld\S6a\F06 - Zone S Soil Testing\Fig2.3 to 2.6FIG 2.3

M:\rvv1\000001\23\A\Data\S6a Field comp DwnId\S6a\F06 - Zone S Soil Testing\Fig2.3 to 2.6FIG 2.4

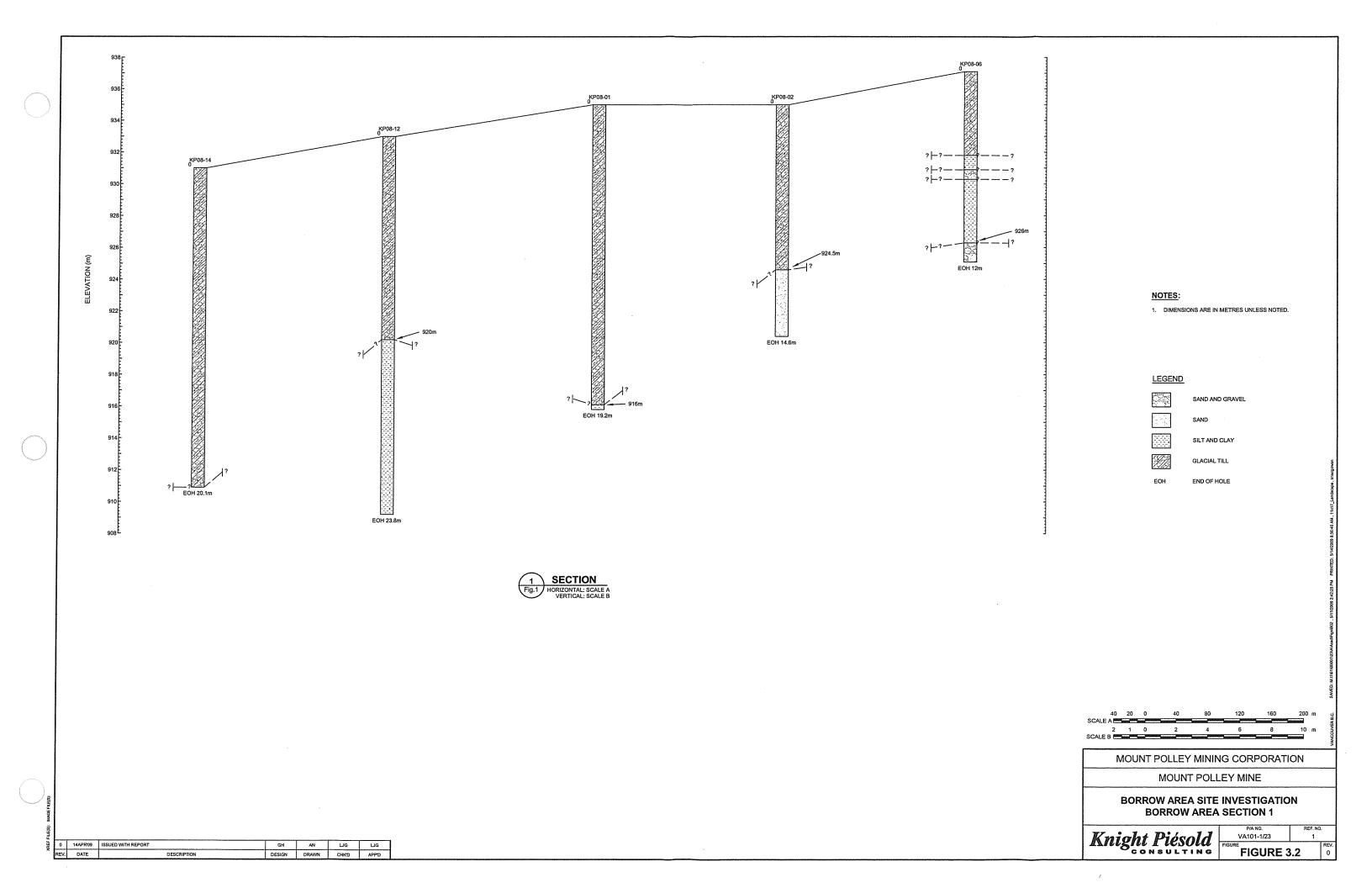
Mix..../100001/23/A\Data\S6a Field comp DwnId\S6a\F06 - Zone S Soil Testing\Fig2.3 to 2.brIG 2.5

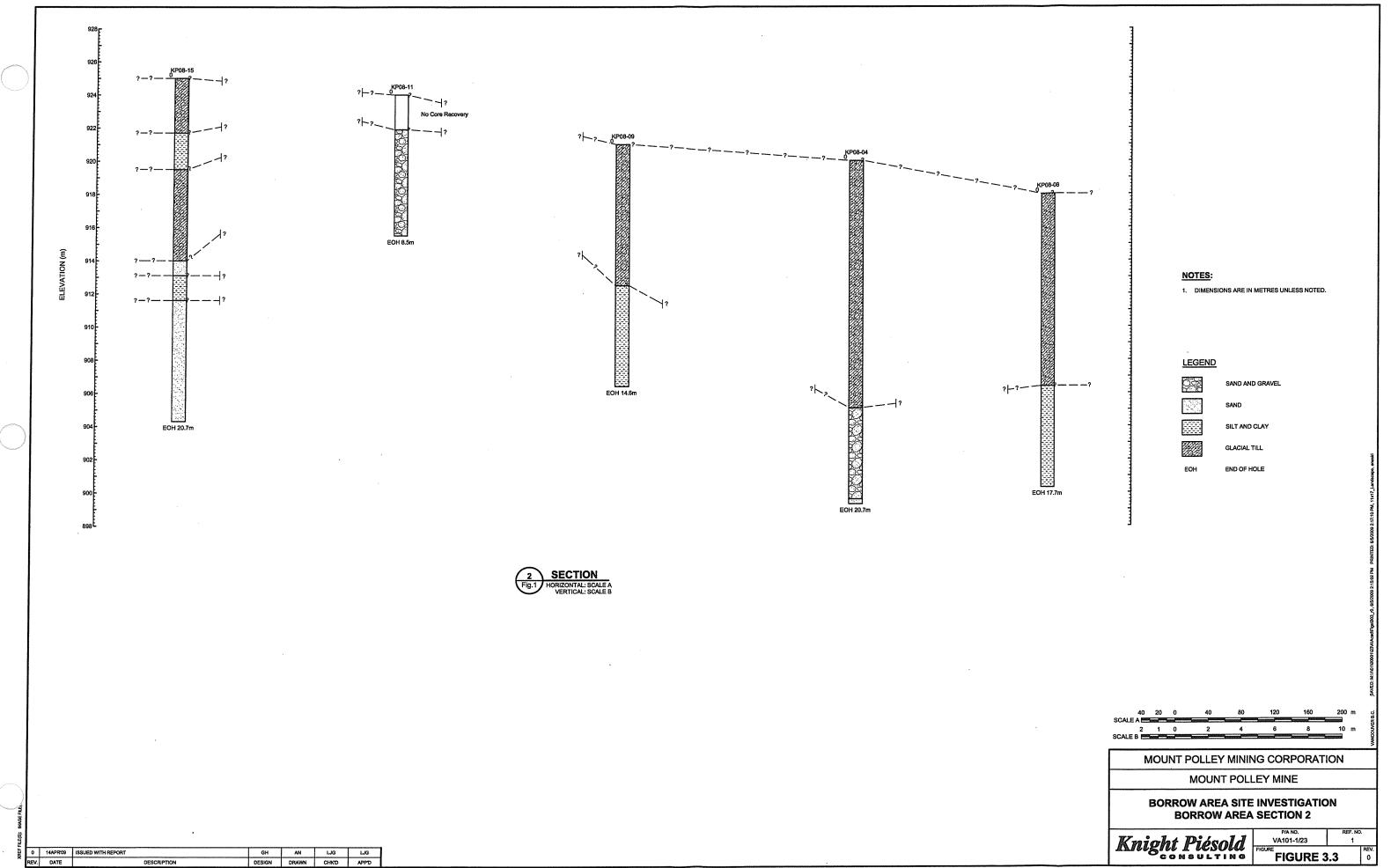
Mikroun/00001/23/A\Data\S6a Field comp Dwnld\S6a\F07 - Zone FT, T, C, U Soil Testing\PSA Fig 2.7 2.10Fig2.7

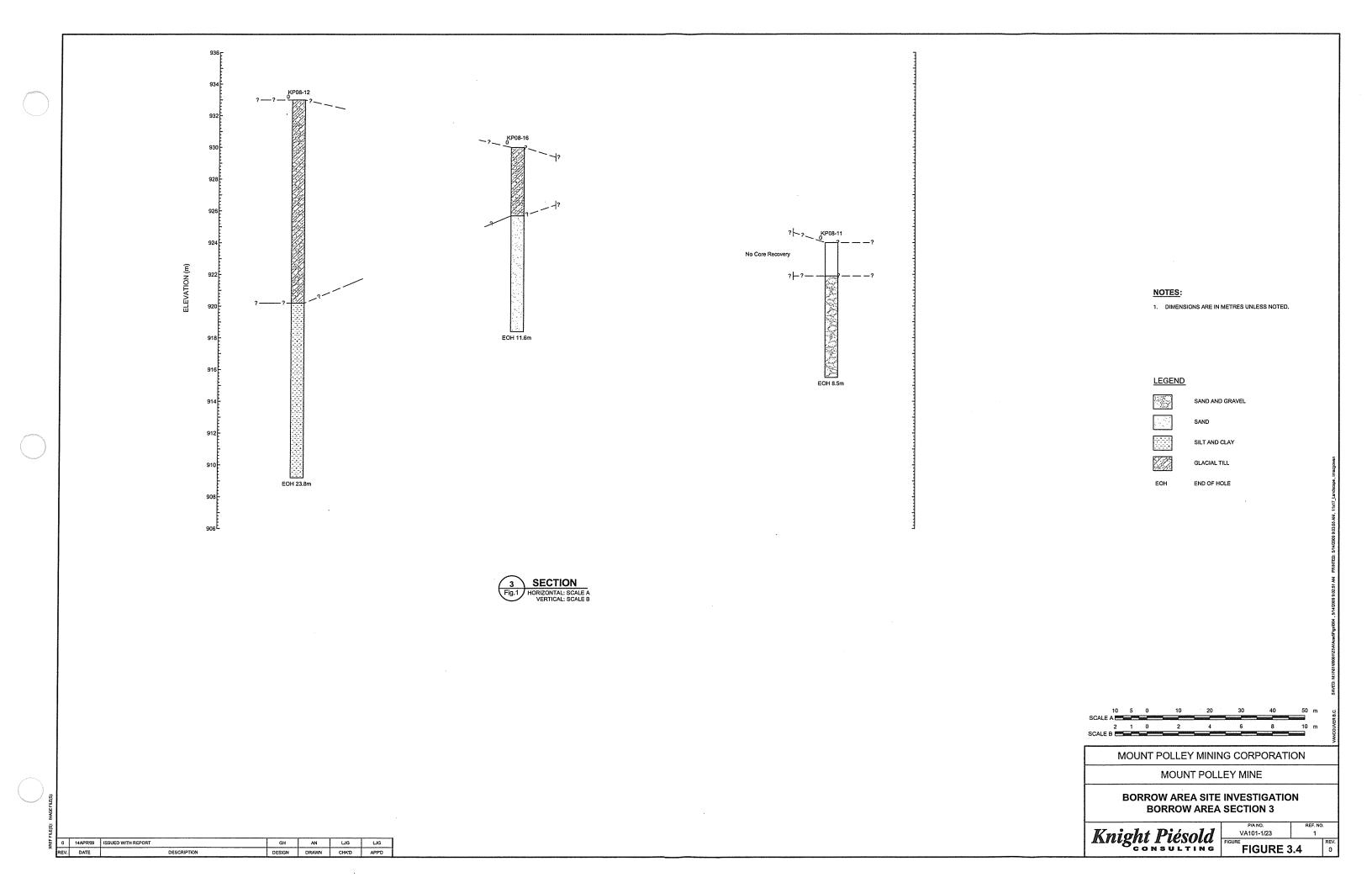
M: (00001\23\A\Data\S6a Field comp Dwnld\S6a\F05 - Zone F Soil Testing\Figs 2.8 2.9

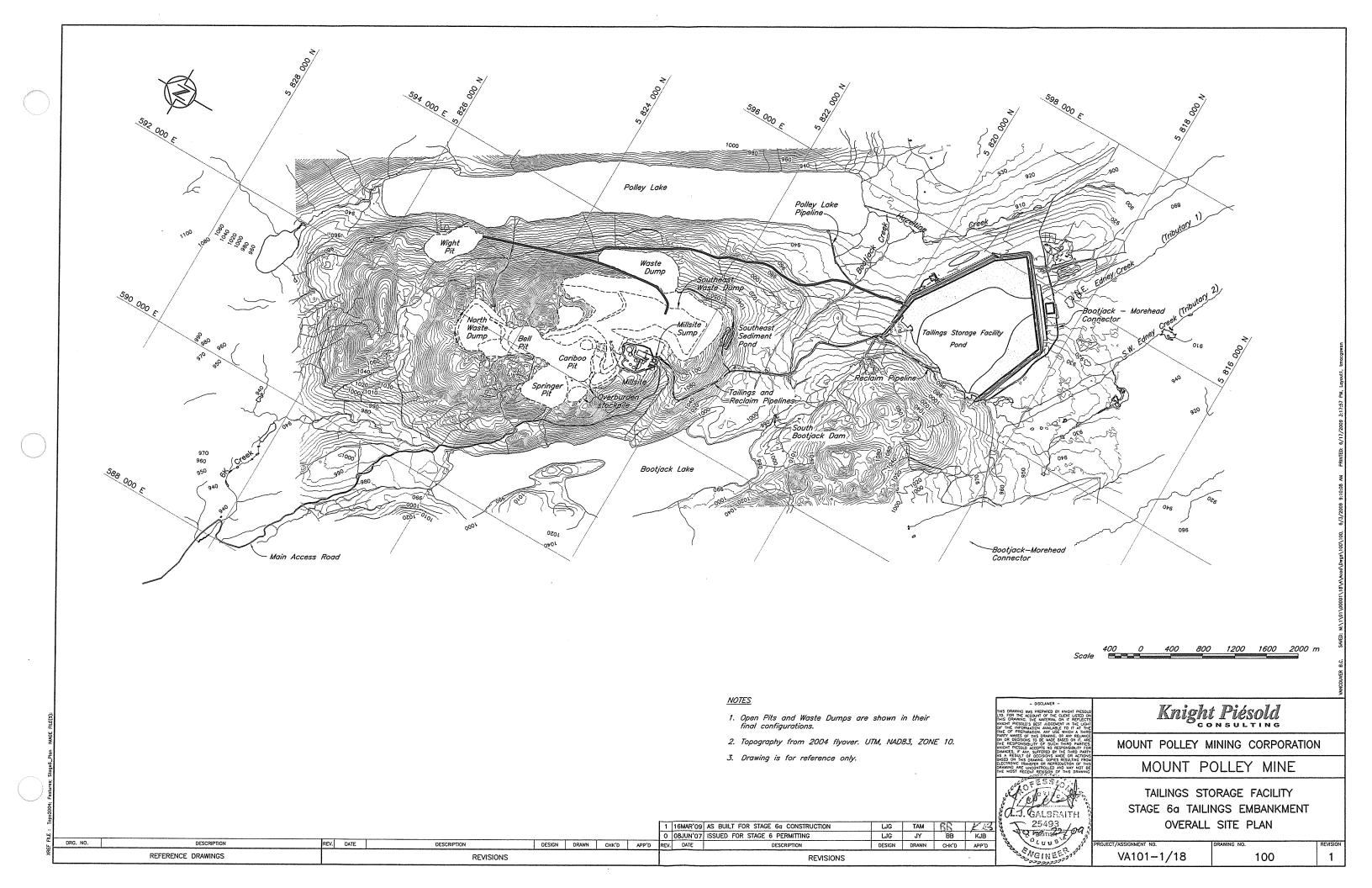
ر2.7 2.10 كان Testing\PSه Field comp DwnId\S6a\F07 - Zone FT, T, C, U Soil Testing\PS المربق

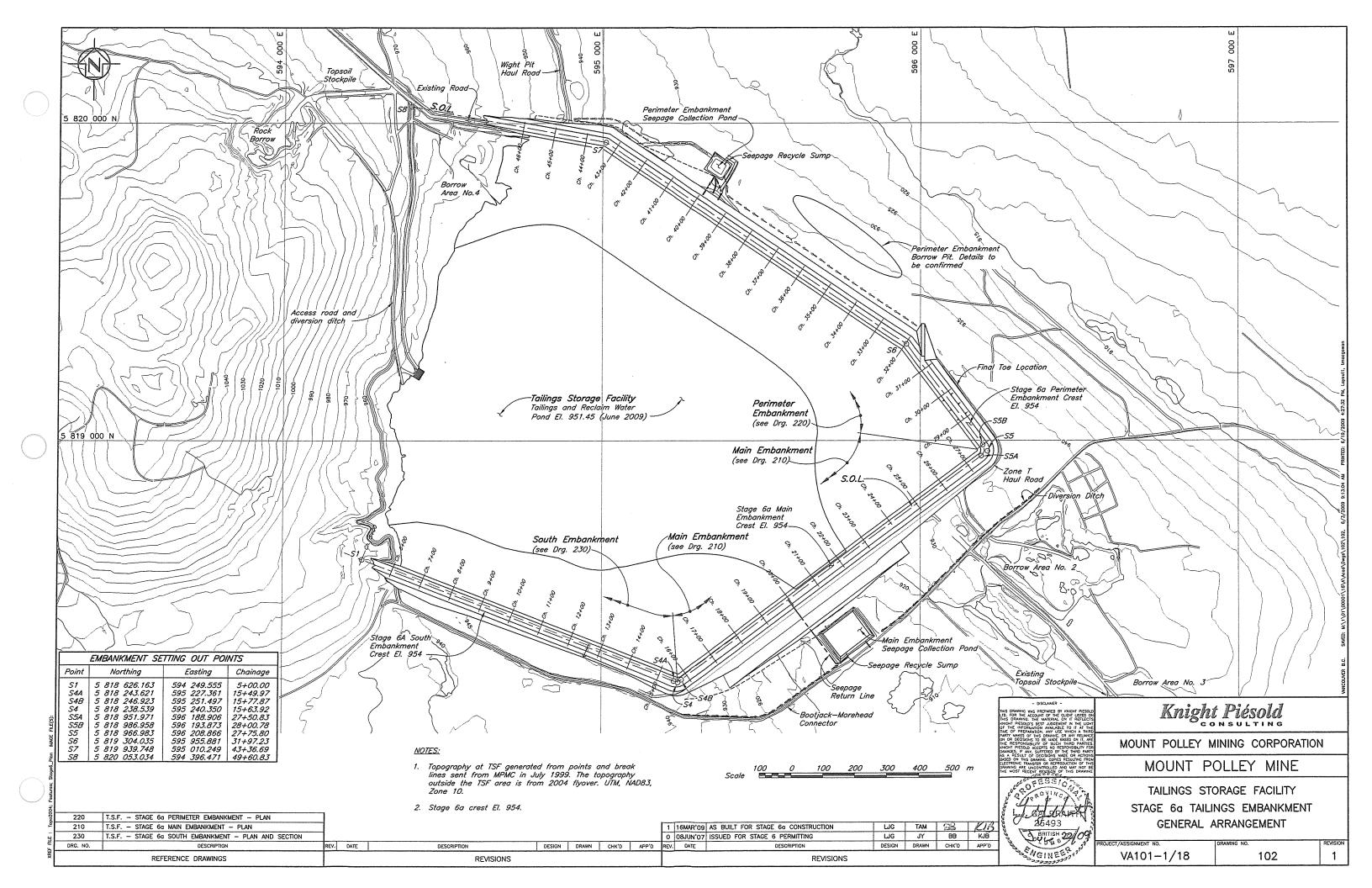
ź

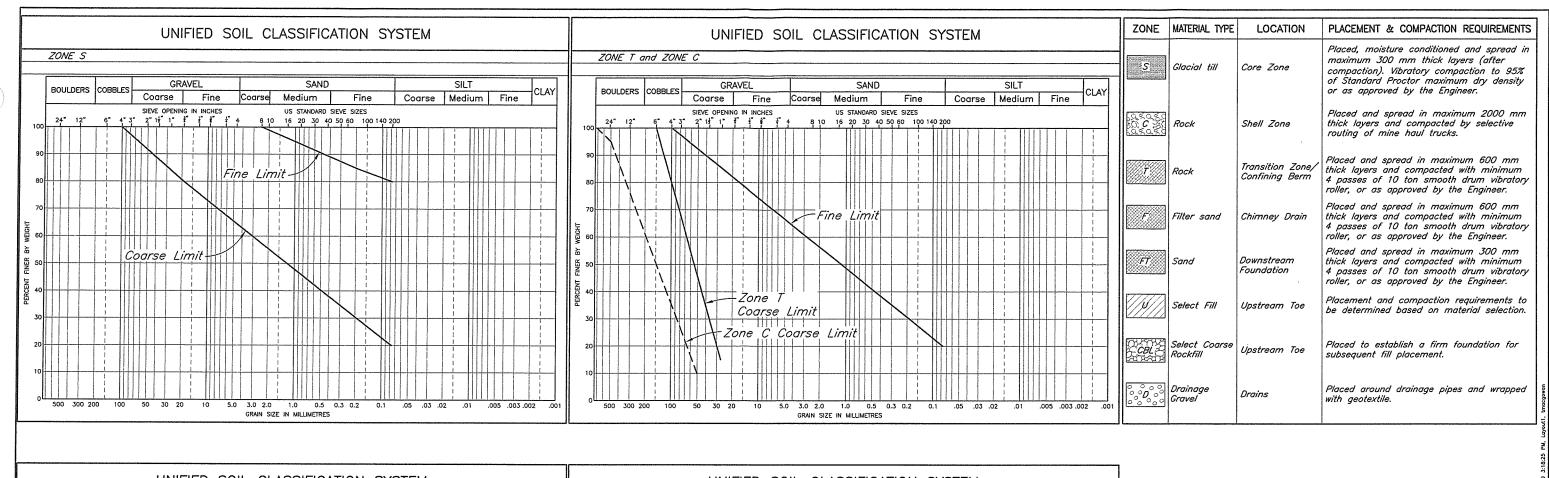

15 PM

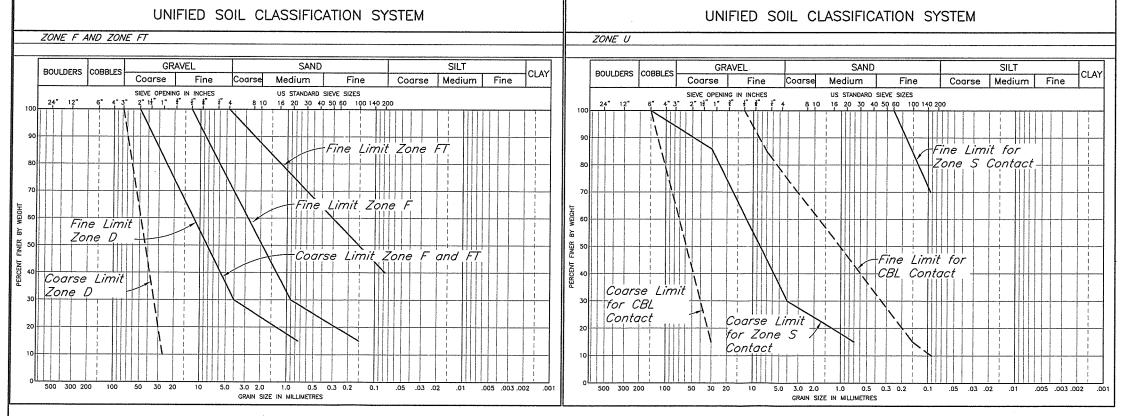

in Flow MeasurementsFig 2.11Upstream Toe Drain Flow


00001\23\A\Data\S6a Field comp Dwnld\S6a\F11 - Foundation Drain Measuremen


 \leq







OFESSION J. GALBRAITH 25493 Cu sait 20009

Knight Piésold

MOUNT POLLEY MINING CORPORATION

MOUNT POLLEY MINE

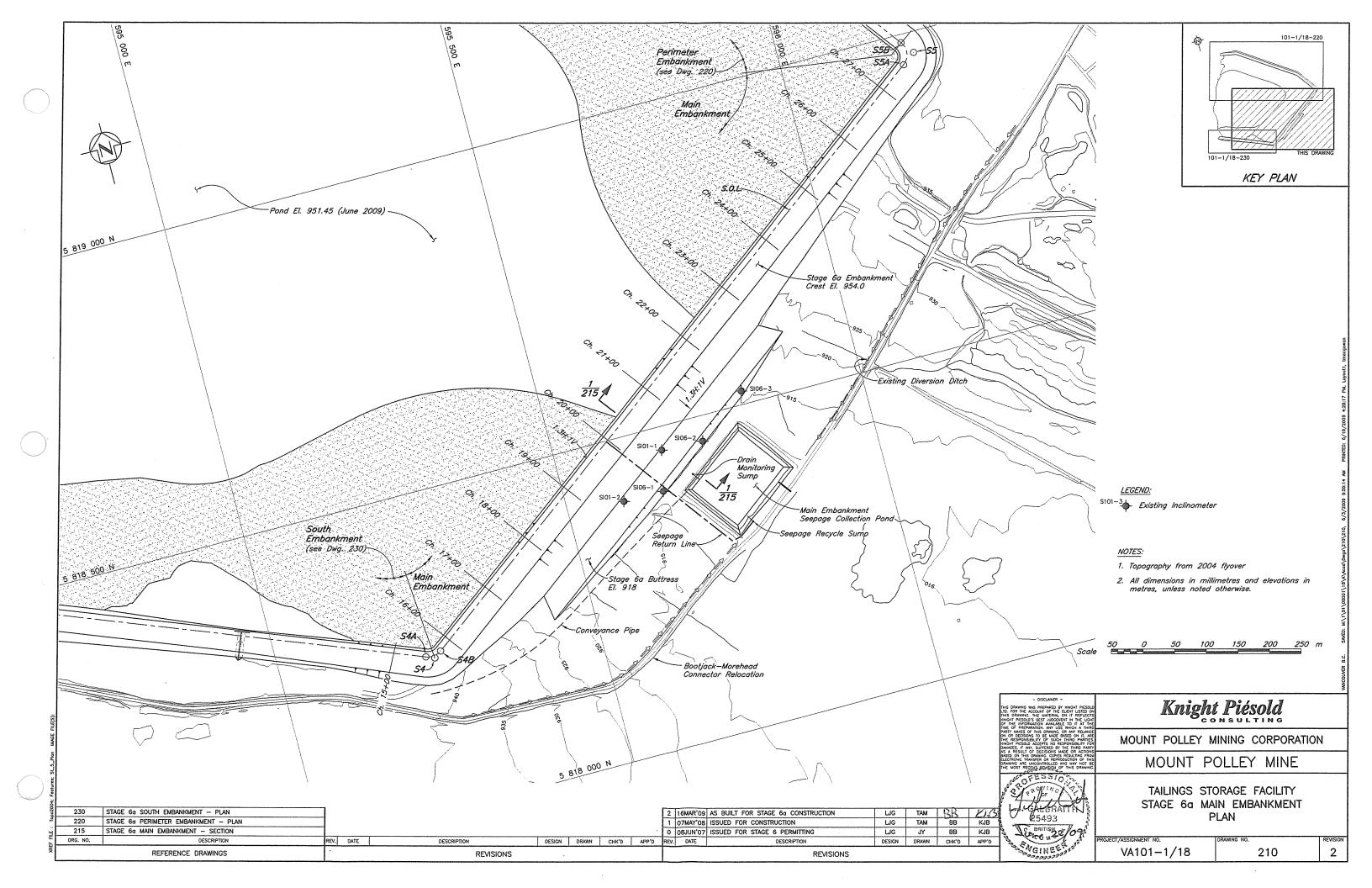
TAILINGS STORAGE FACILITY STAGE 6a TAILINGS EMBANKMENT MATERIAL SPECIFICATIONS

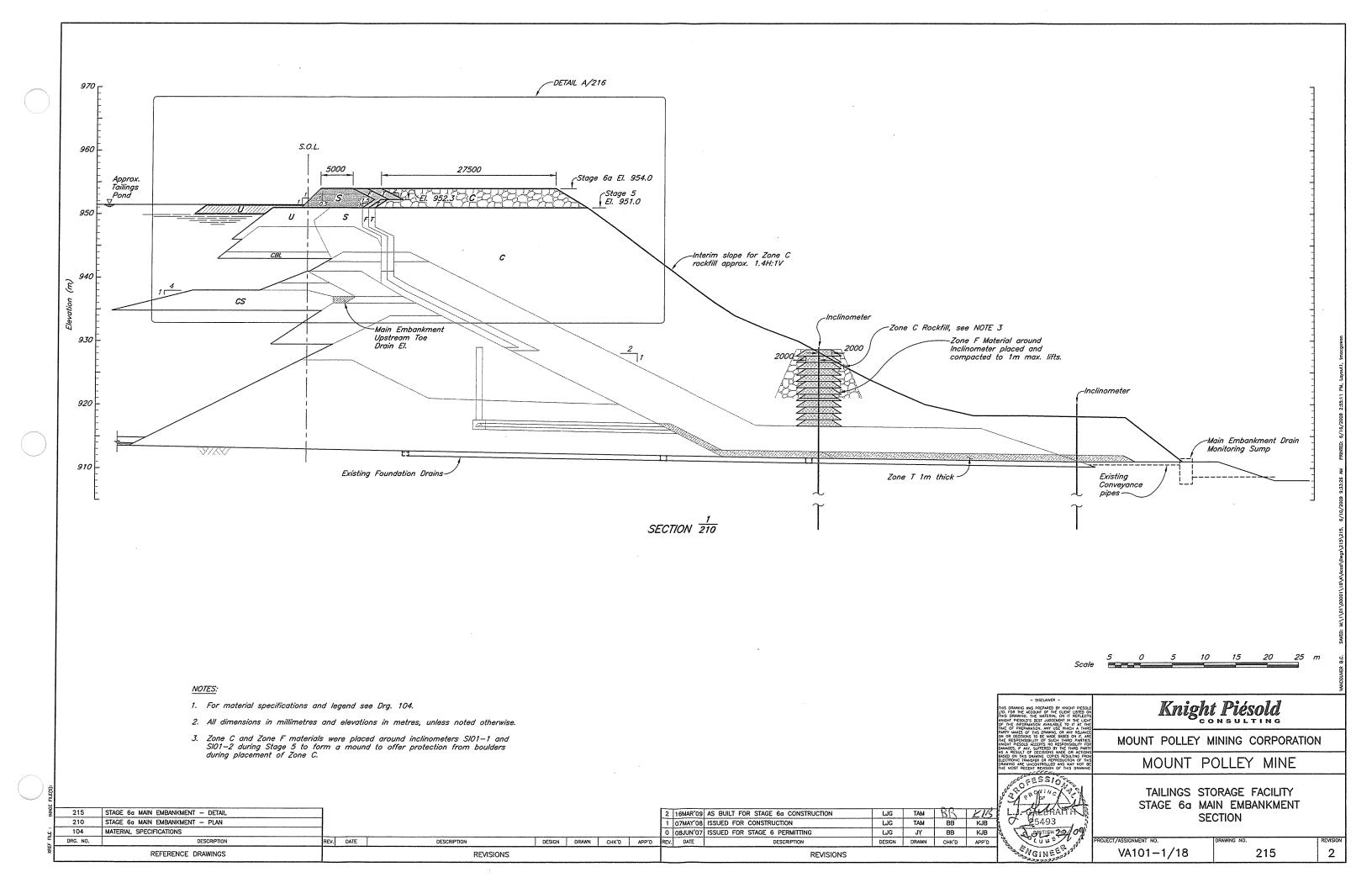
VA101-1/18 2 104

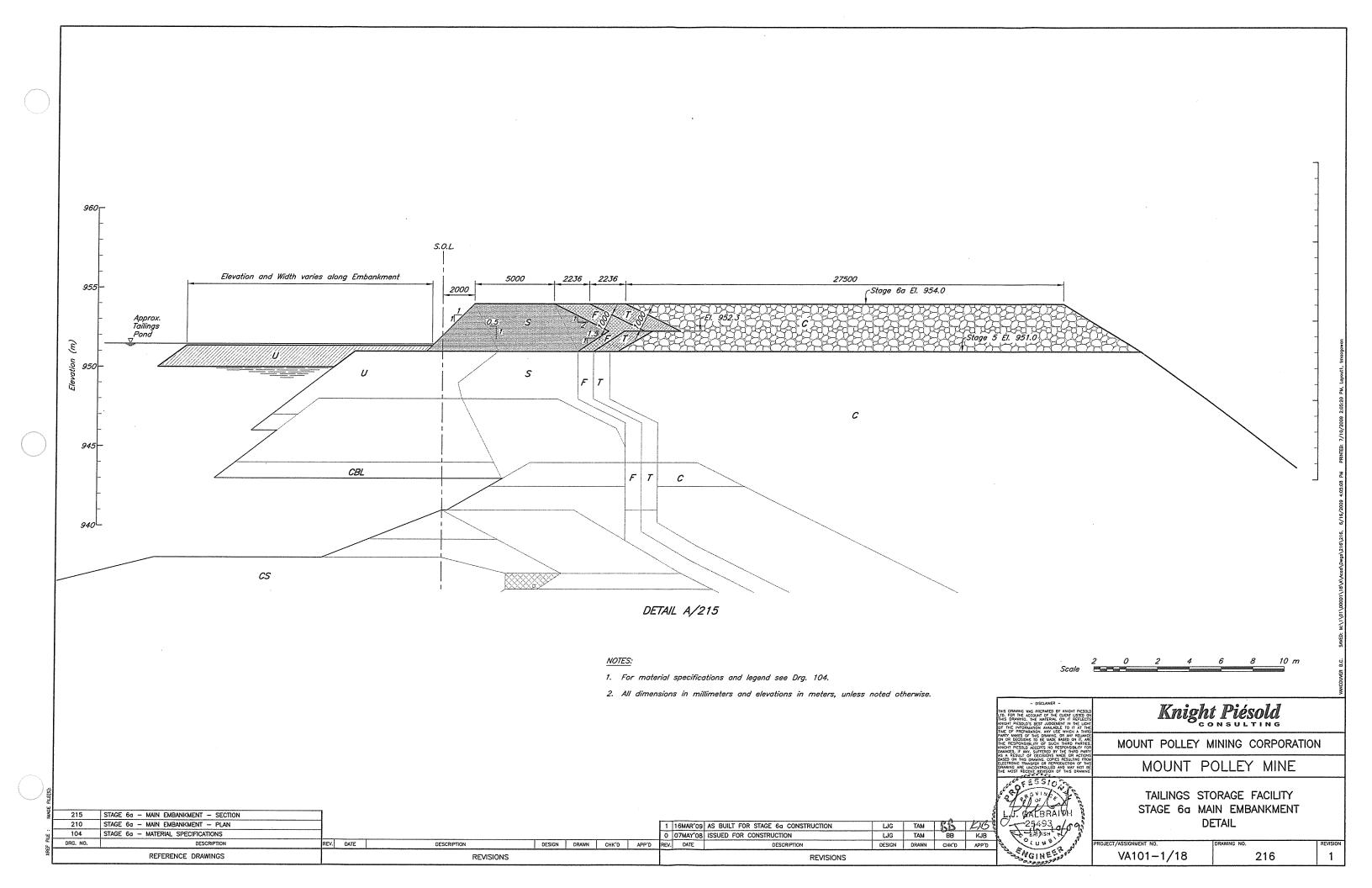
4		
7	235/236	STAGE 6a - SOUTH EMBANKMENT - SECTIONS
MASE	225/226	STAGE 6a - PERIMETER EMBANKMENT - SECTIONS AND DETAILS
١	215/216	STAGE 6d - MAIN EMBANKMENT - SECTIONS AND DETAILS
4	240	STAGE 60 UPSTREAM TOE DRAIN - SECTIONS AND DETAILS
	DRG, NO.	DESCRIPTION

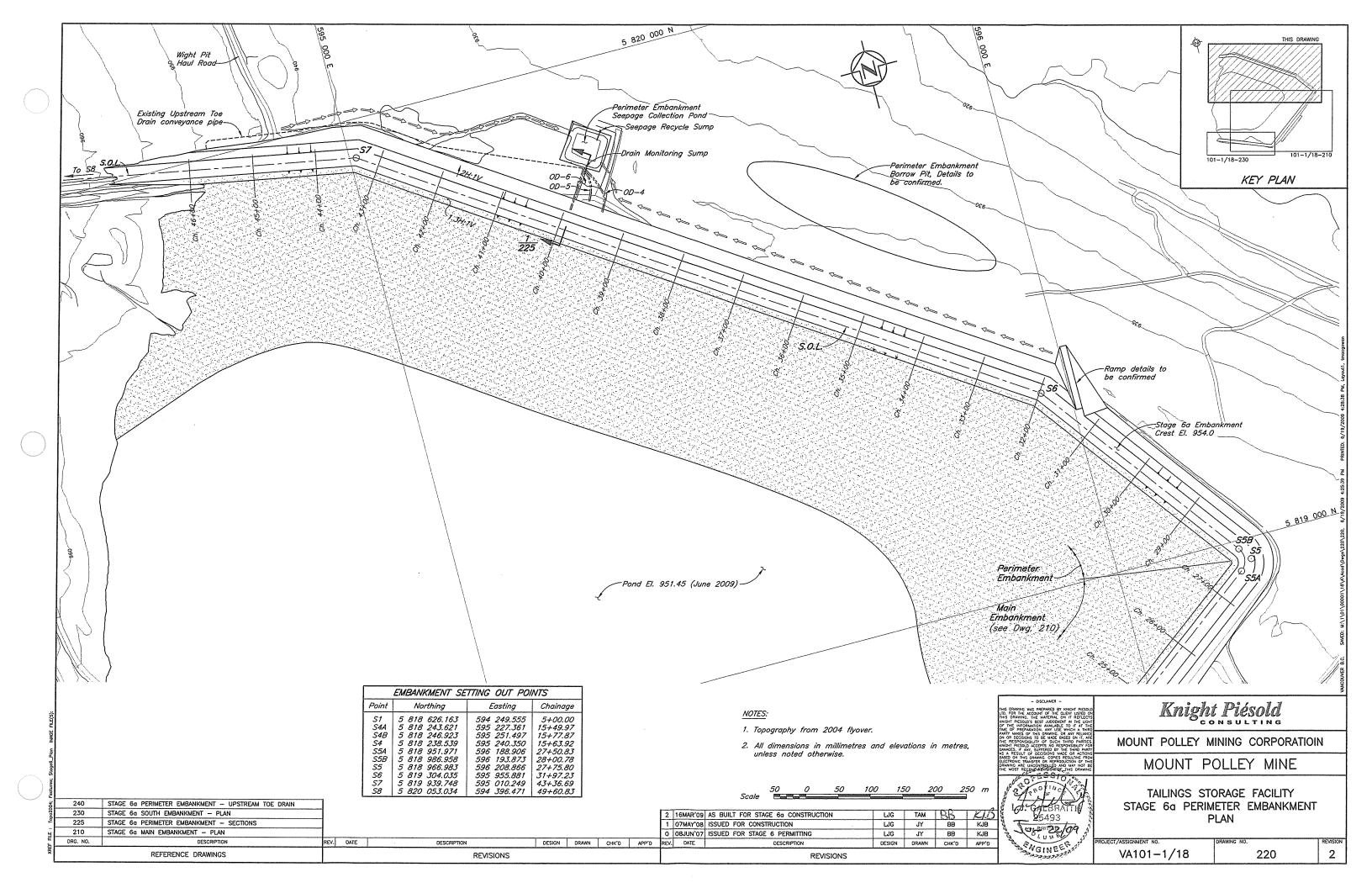
REFERENCE DRAWINGS

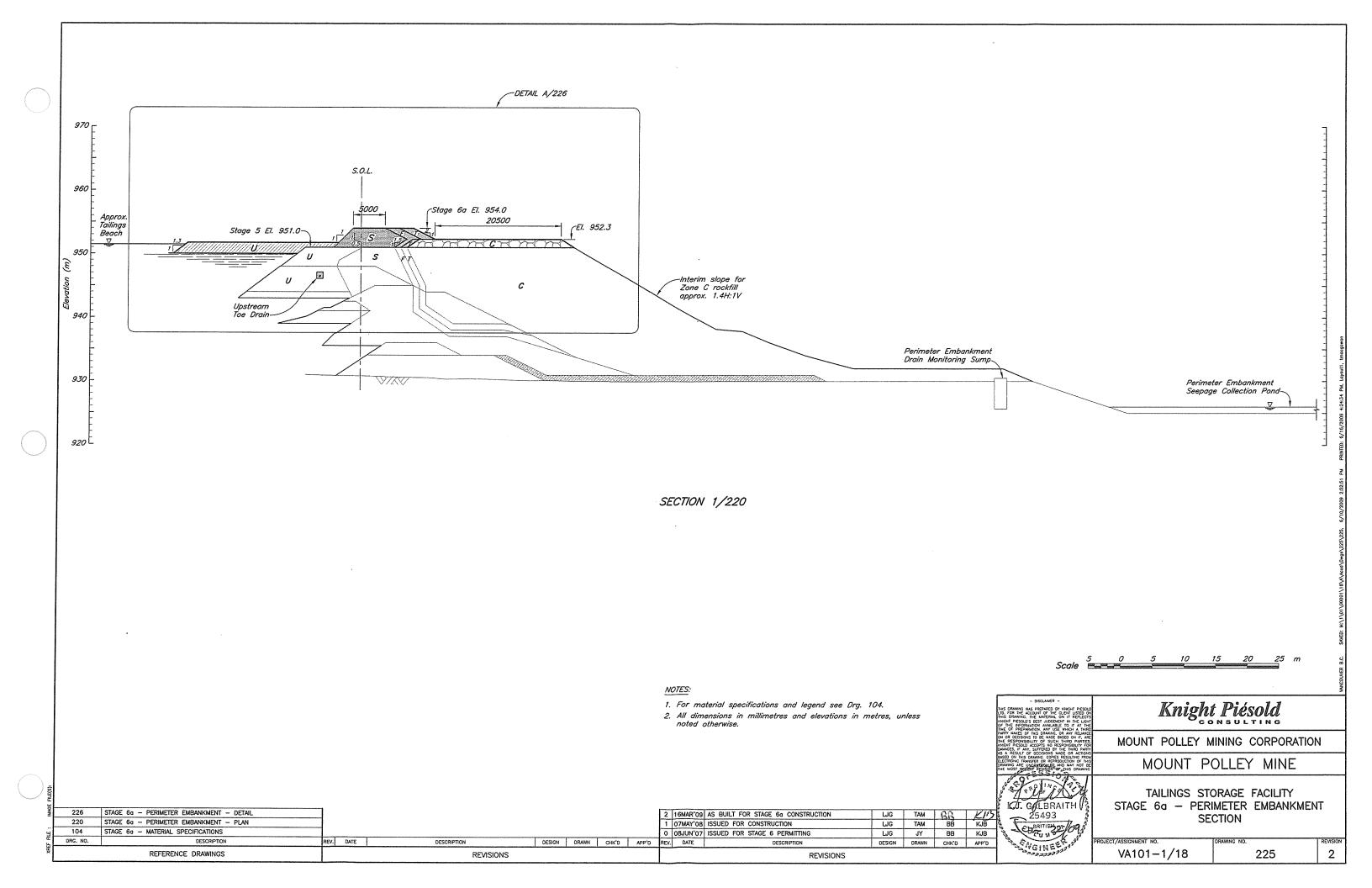
LJG TAM BB KJB 2 19MAR'09 AS BUILT FOR STAGE 6a CONSTRUCTION 1 07MAY'08 ISSUED FOR CONSTRUCTION LJG JY BB KJB 08JUN'07 ISSUED FOR STAGE 6 PERMITTING DESIGN DRAWN CHK'D APP'D REV. DATE DESIGN DRAWN CHK'D APP'D

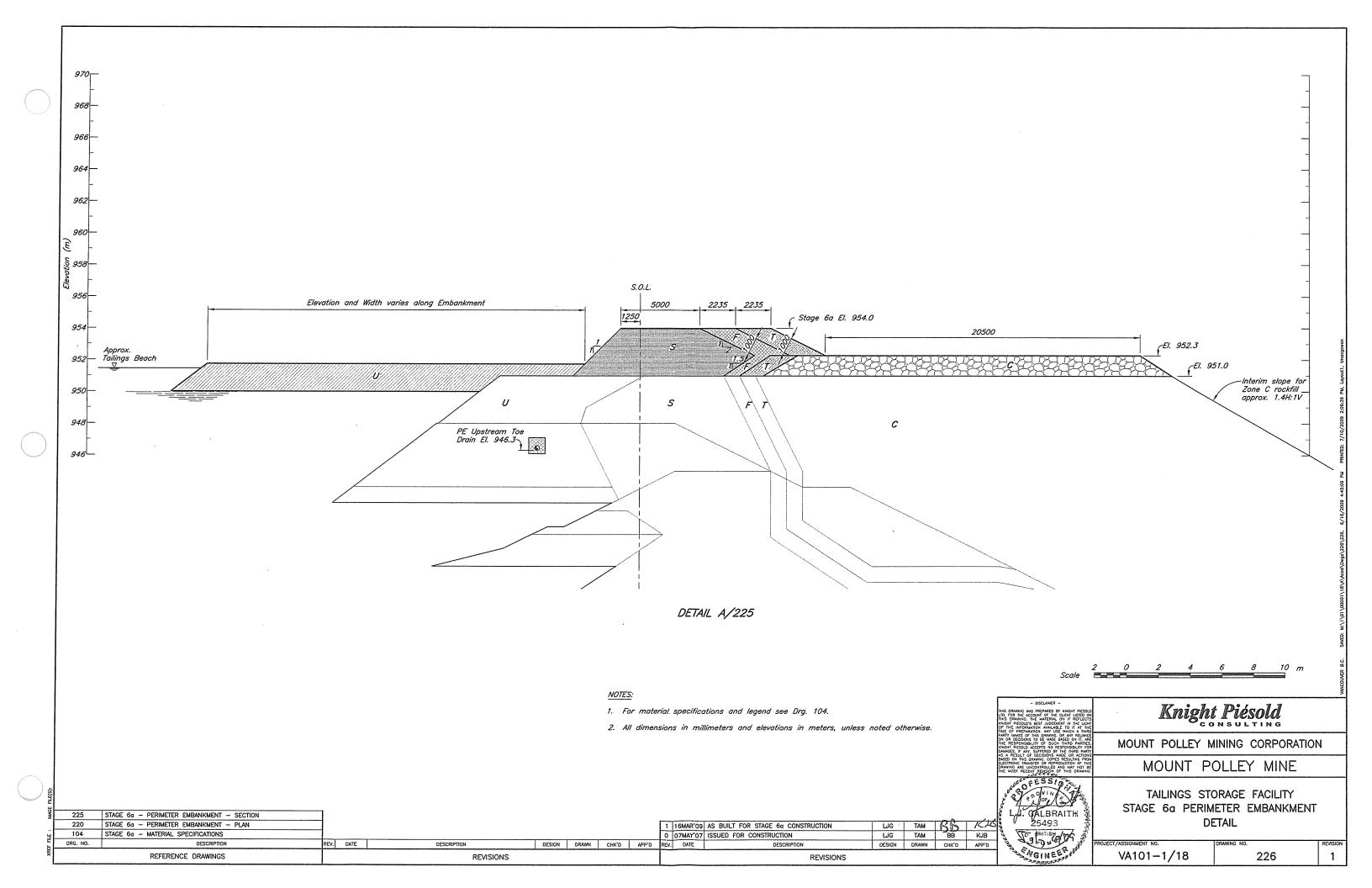

REVISIONS

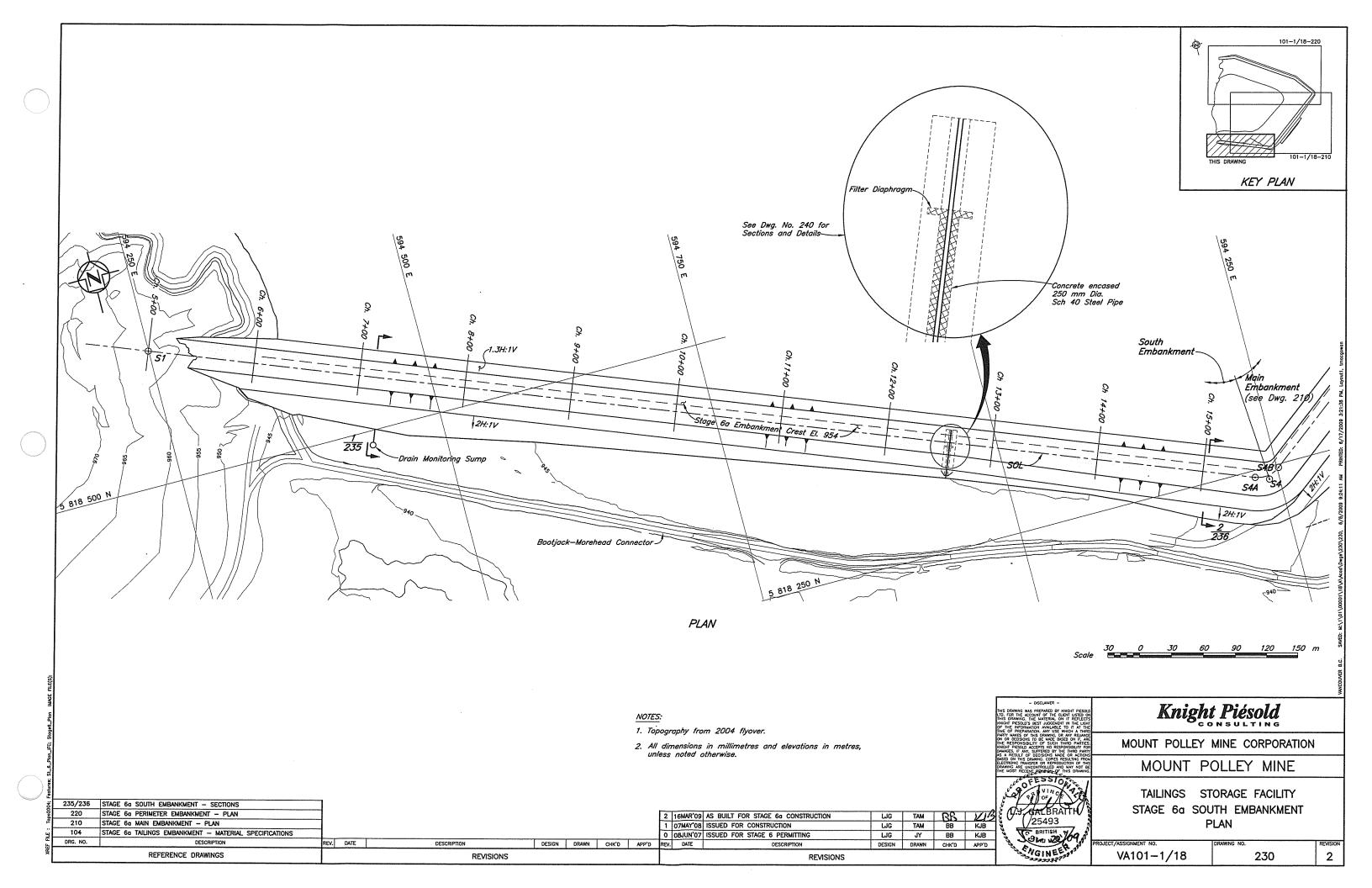

DESCRIPTION

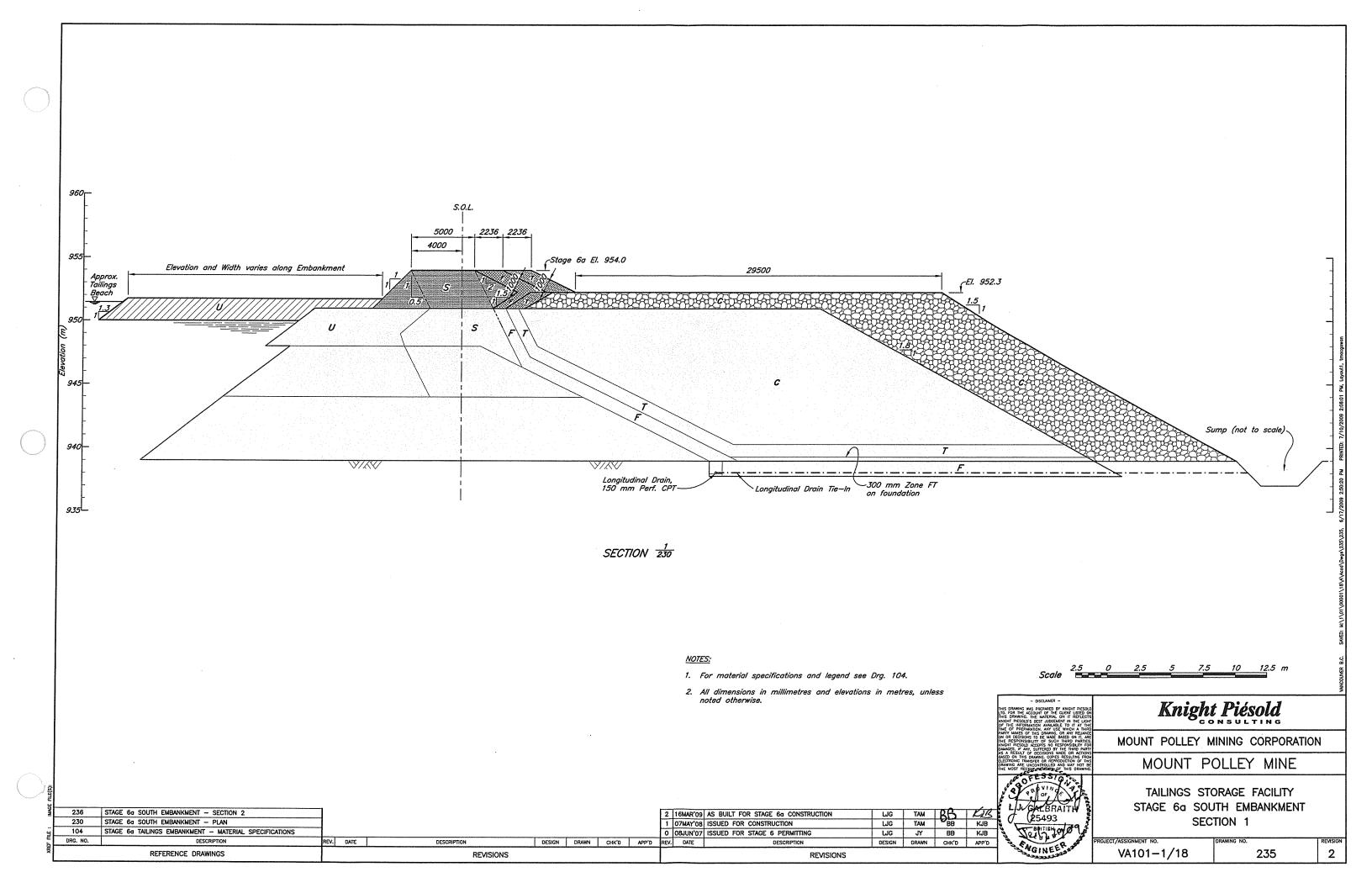

REV. DATE

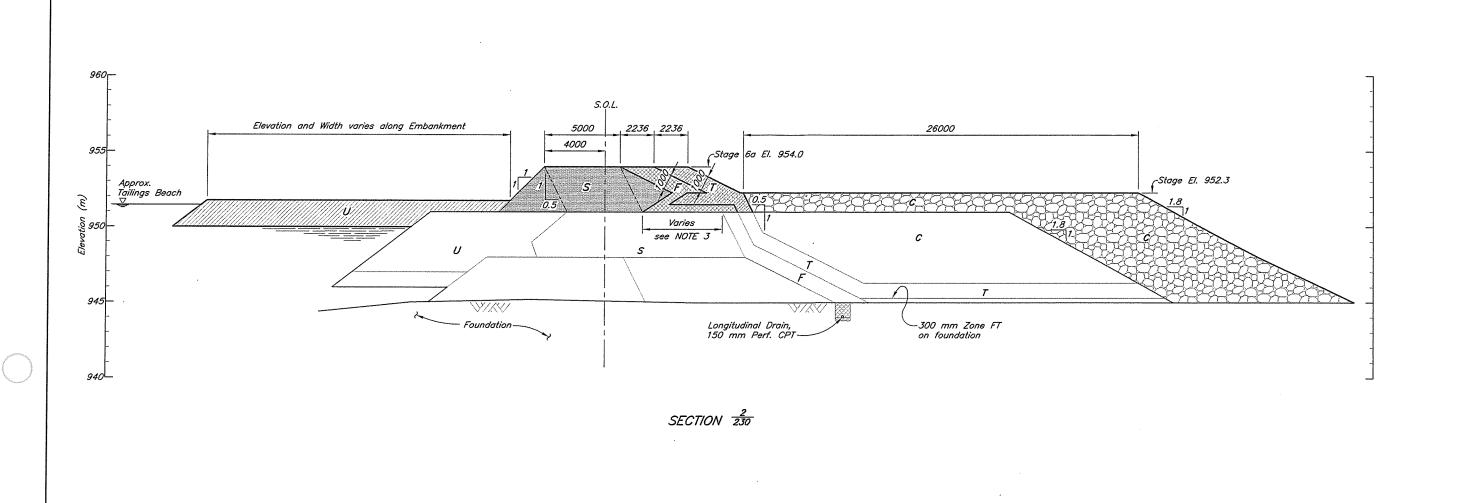

REVISIONS


SAGINES









Notes:

- 1. For material specifications and legend see drg. 104.
- 2. All dimensions in millimetres and elevations in metres, unless noted otherwise.
- 3. Maximum dimension of 4500 at Ch 15+00 and gradually decrease to 0 at Ch 13+50.

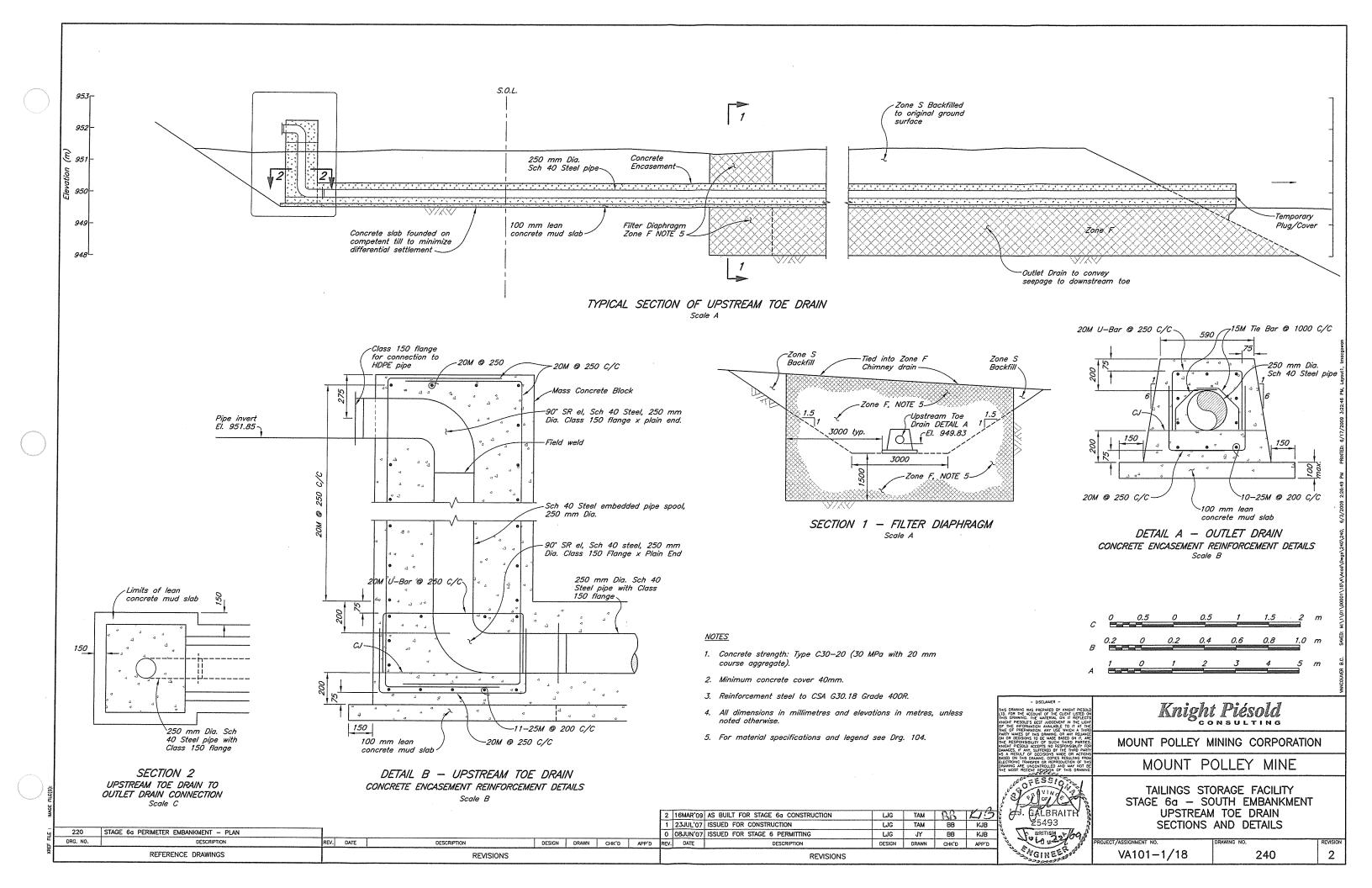
THIS DRAWING WAS PREPARED BY KINGHT PIESOLD LTD. FOR THE ACCOUNT OF THE CUENT USED ON THIS DRAWING. THE MATERIAL, ON IT REFLECTS KINGHT PIESOLO'S BEST AUDCEMENT IN THE LIGHT OF THE INFORMATION AVAILABLE TO IT AT THE MILE OF PREPARATION, ANT USE WHICH A THIRD DRAW THE MILE OF THE REPORTATION AND THE WORLD AT THE OF THE THE OF THE REPORTATION, AND USE WHICH A THIRD DRAW THE WISE WHICH THE WISE WHI	Knight Piésold
PARTY MAKES OF THIS DRAWING, OR ANY RELIANCE ON OR DECISIONS TO BE MADE BASED ON IT, ARE THE RESPONSIBILITY OF SUCH THIRD PARTIES, KNIGHT PIESOLD ACCEPTS NO RESPONSIBILITY FOR DAMACES, IF ANY SUFFERED BY THE THIRD PARTY AS A RESULT OF DECISIONS MADE OR ACTIONS	MOUNT POLLEY MINING CORPORATION
AS A MESULT OF DECISIONS MADE OR ACTIONS BASED ON THIS DRAWING, COPIES RESULTING FROM ELECTRONIC TRANSFER OR REPRODUCTION OF THIS DRAWING ARE UNCONTROLLED AND MAY NOT BE THE MOST RECENT PERSON OF THIS DRAWING.	MOUNT POLLEY MINE
J. GALBRAITH	TAILINGS STORAGE FACILITY STAGE 6a SOUTH EMBANKMENT
JES BRITISTA A	SECTION 2 PROJECT/ASSIGNMENT NO. DRAWING NO. RR
- Chause Car	

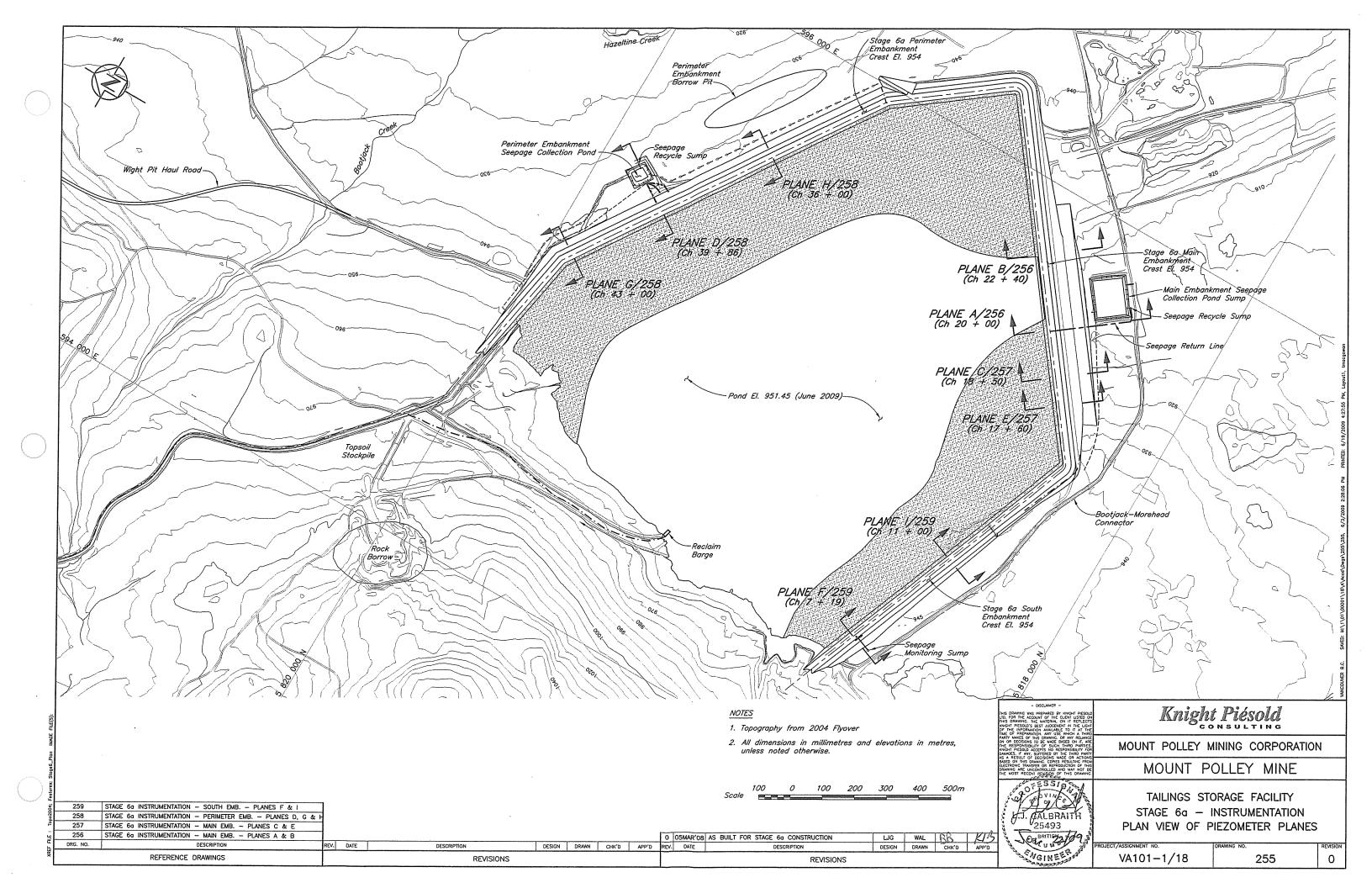
Scale 2.5 0 2.5 5 7.5 10 12.5 m

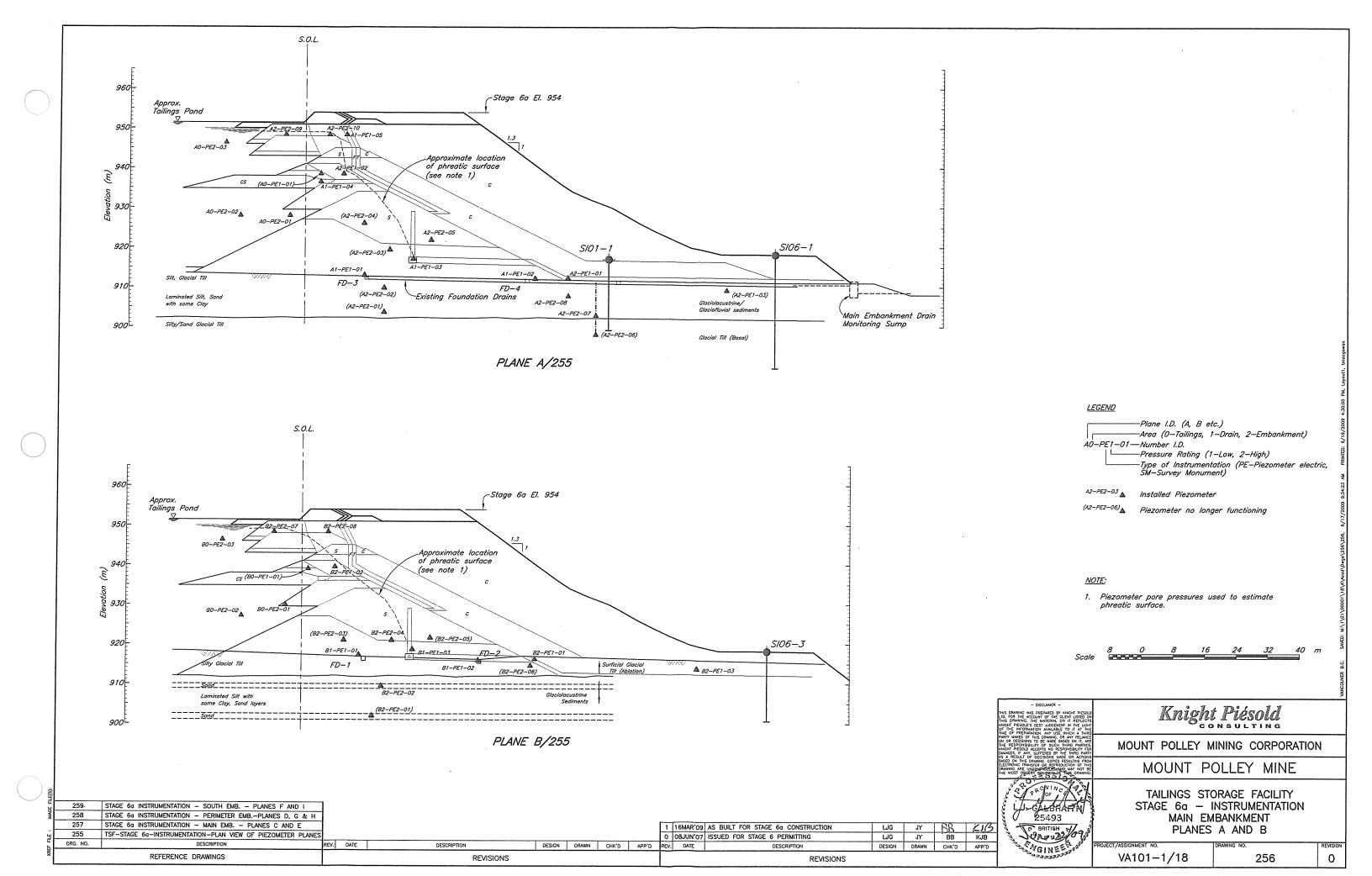
235 STAGE 6d SOUTH EMBANKMENT - SECTION 1 230 STAGE 6a SOUTH EMBANKMENT - PLAN 104 STAGE 6g TAILINGS EMBANKMENT - MATERIAL SPECIFICATIONS DRG. NO. DESCRIPTION

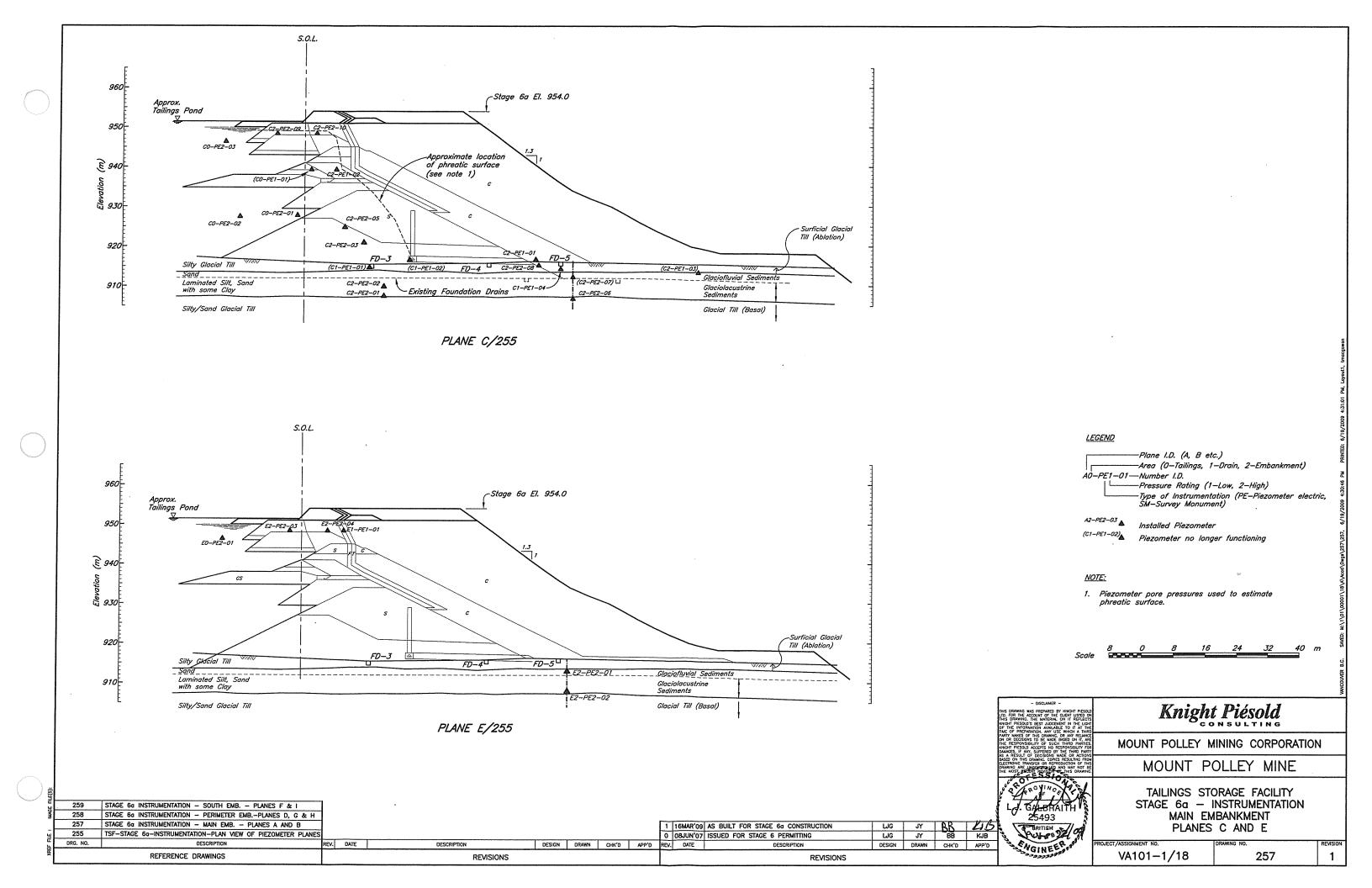
1 16MAR'09 AS BUILT FOR STAGE 6a CONSTRUCTION 0 07MAY'08 ISSUED FOR CONSTRUCTION REV. DATE DESIGN DRAWN CHK'D APP'D REV. DATE DESCRIPTION REVISIONS

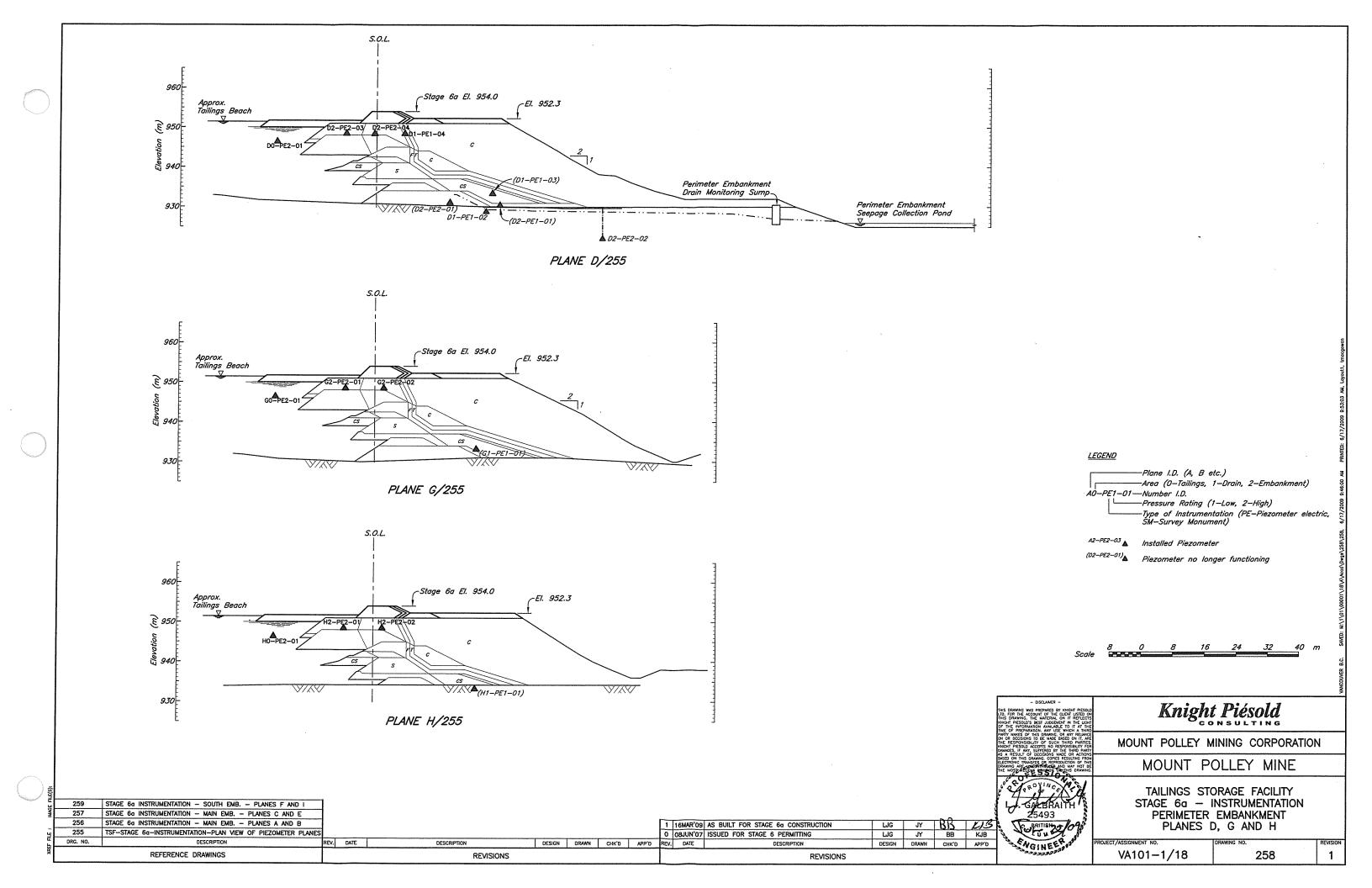
REVISIONS

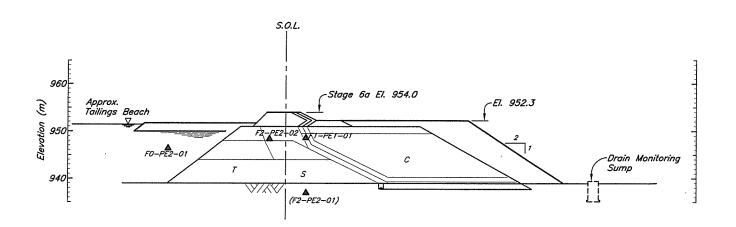

LJG TAM SIS LJB LJG JY BB KJB DESIGN DRAWN CHK'D APP'D

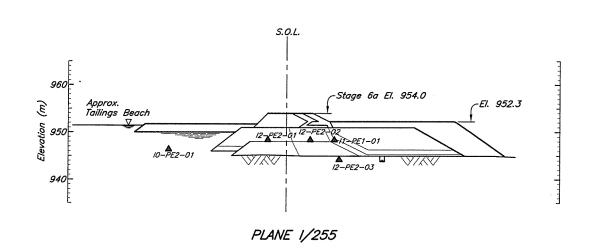

MGINEER


VA101-1/18


236


REFERENCE DRAWINGS





PLANE F/255

<u>LEGEND</u>

-Plane I.D. (A, B etc.) -Area (0-Tailings, 1-Drain, 2-Embankment) AO-PE1-01-Number I.D. -----Pressure Rating (1-Low, 2-High)

-Type of Instrumentation (PE-Piezometer electric, SM-Survey Monument)

A2-PE2-03 A Installed Piezometer

(F2-PE2-01) Piezometer no longer functioning

Knight Piésold

MOUNT POLLEY MINING CORPORATION

MOUNT POLLEY MINE

TAILINGS STORAGE FACILITY STAGE 6a - INSTRUMENTATION SOUTH EMBANKMENT PLANES F AND I

259

Ĕ			
_	258	STAGE 60 INSTRUMENTATION - PERIMETER EMBPLANES D, G & H	1
3	257	STAGE 60 INSTRUMENTATION - MAIN EMB PLANES C AND E	1
I	256	STAGE 6g INSTRUMENTATION - MAIN EMB PLANES A AND B	1
il	255	TSF-STAGE 6d-INSTRUMENTATION-PLAN VIEW OF PIEZOMETER PLANES	1
: [DRG. NO.	DESCRIPTION	6

REFERENCE DRAWINGS

1 16MAR'09 AS BUILT FOR STAGE 60 CONSTRUCTION 0 08JUN'07 ISSUED FOR STAGE 6 PERMITTING DESIGN DRAWN CHK'D APP'D REV. DATE REVISIONS

LIG JY RB KJB DESIGN DRAWN CHK'D APP'D REVISIONS

VA101-1/18

APPENDIX A

LABORATORY TEST RESULTS

Appendix A1 Zone S Control

Appendix A2 Zone S Record

Appendix A3 Zone U Record

Appendix A4 Zone F Record

Appendix A5 Zone T Record

Appendix A6 South Embankment Concrete Encasement – Concrete Strength Test Results

APPENDIX A1

ZONE S CONTROL

(Pages A1-1 to A1-35)

1301 Kelliher Road Prince George CV2L5S8 Phone (250)564-4304; fax (250)__+-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

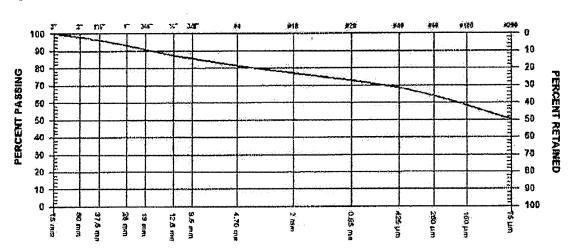
Mount Polley Mine

Likely

CONTRACTOR

SIEVETEST NO. 1

DATE RECEIVED 2008. May. 22 DATE TESTED 2008. May. 23 DATE SAMPLED 2008. May. 12

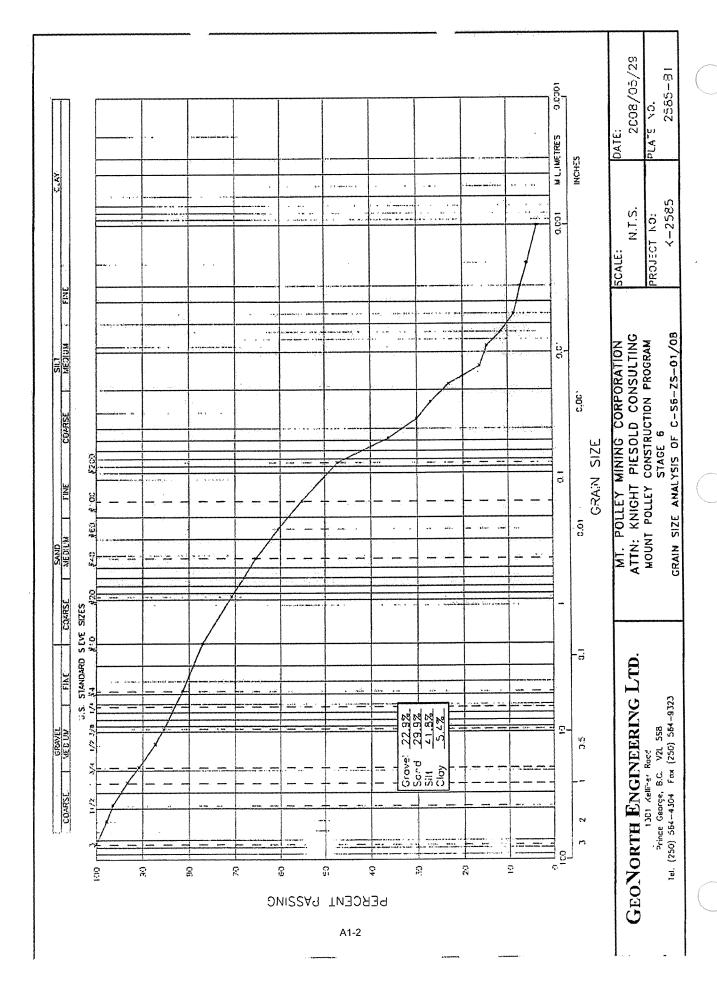

Borrow Area SUPPLIER C-S6-ZS-01/08

Client SAMPLED BY

SOURCE **SPECIFICATION**

IJJ TESTED BY TEST METHOD WASHED

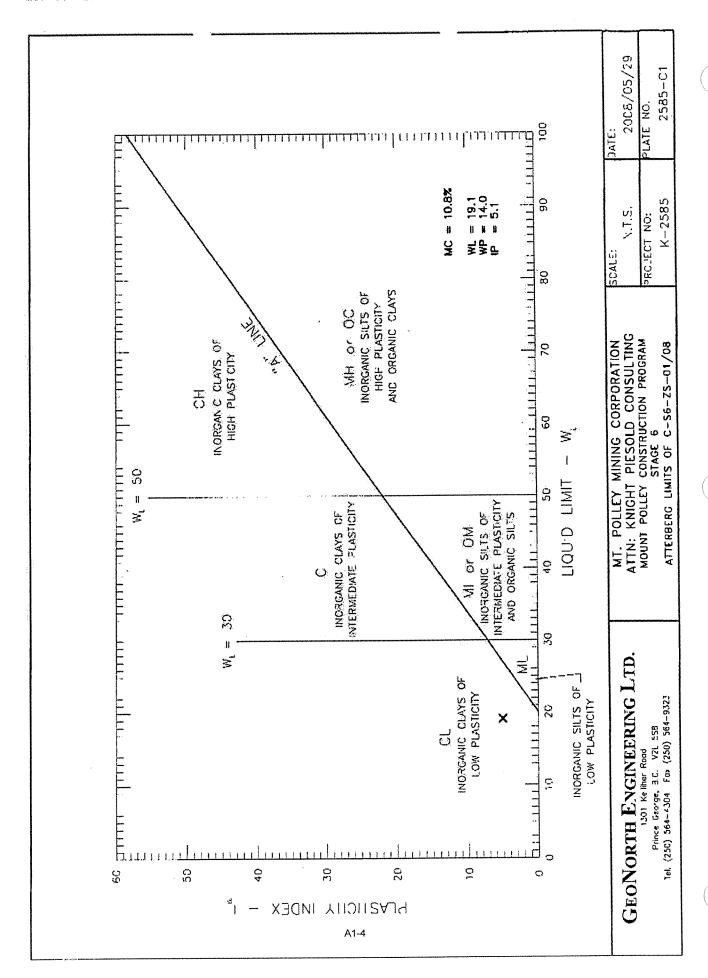
MATERIAL TYPE TILL


GRAVE	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 nm 9.5 mm	100.0 97.7 96.4 93.3 90.8 87.3 85.5	

SAI	ND SIZE	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No.	40 60 100	4.75 mm 2.00 mm 850 μm 425 μm 250 μm 150 μm	81.4 77.1 72.9 68.6 63.7 58.4	
No. No.	100 200	150 µm 75 µm	58.4 50.1	

COMMENTS

Page 1 of 1


2008.May.29

GeoNorth Engineering Test Designation: ASTM D-422

Hydrometer Analysis

Source/Location: C-S6-ZS-01/08 Sample #: Sample #: Sampled By: Client Date Sampled: 05.12.08 Initial Moisture Content Tare No. Wet Wt. & Tare Tare Wt. Tare Wt. Tare Wt. Wh. Of Dry Soil Dry Wt. Of Sample from Initial Moisture Moisture Content % Tare Wt.		ve No. 38.1 25.4 19.0 12.5 9.5 4.75	Hole #: Tested By: DJ Date Received: 05.22.08 Sieve Analysis Weight Total Wr. O Retained Passing Sieve	Hole #: DJ ved: 05.22.(nalysis Total Wt. Passing	rian rigo.	Sieve No. 20 20 100 200 200	Wei	Project #: K-2585 Type: TILL Time: Checked By: NK Date Tested: 05.26. Hydrometer Sieve Analysis Total Wt.	K-2585 Y: NK d: 05.26.08	
Source/Location: C-S6-ZS-01 Sample #: Sampled By: Client Date Sampled: 05.12.08 Initial Moisture Content Water Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial Moi		No. No. 125.4 10.0	Fested By: Cate Receives Sieve An Retained Feste W. SEE W.	lole #: JJ ed: 05.22.(alysis fotal Wt. assing	Finer nan rig.		Wei	Type: TILL Time: Checked B Date Teste cler Sieve Total Wt.	y: NK :d: 05.26.08	
Sample #: Sampled By: Client Date Sampled: 05.12.08 Initial Moisture Content Water Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial Moi		No. 25.4 19.0 10.0 10.0 10.0 10.0 10.0 10.0	Fested By: Cate Receive Sieve An Reight Retained Re	tole #: by alysis fotal Wr. assing	Finer nan rig.		Wei	Time: Checked B Date Teste etter Sleve Total Wt.	y: NK d: 05.26.08	
Sampled By. Client Date Sampled: 05.12.08 Initial Moisture Content Tare No. Wet Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content Wt. Of Sample from Initial Moi		ve No. 38.1 25.4 19.0 12.5 9.5 4.75	Sieve An Sieve An Setained F	ed: 05.22.0 alysis fotal Wt.	Finer nan nig.	Sieve No. 10 20 40 60 60 60 60 200 200 200 200 600 600 60	Wei	Checked B Date Teste efter Sieve Total Wf.	y: NK d: 05.26.08	
Initial Moisture Content Initial Moisture Content Tare No. Wet Wt. & Tare Ory Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial Moi		38.1 25.4 19.0 12.5 9.5 4.75	Sieve An Sieve An Reight Retained F	alysis Total Wr.	Finer nan ng. mp.	Sieve No. 10 20 40 60 60 60 200 200 200 200 200 600 600 6	Wei	Date Teste reter Sieve Total Wt. Finer	d: 05.26.08	
Tare No. Wet Wt. & Tare Dry Wt. & Tare Water Wt. Tare Wt. Wit. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial Moi		38.1 25.4 19.0 12.5 4.75 4.75	Sieve An Weight Retained Reta	5 0	.	Sieve No. 10 20 20 20 200 200	Wei	eter Sieve Total Wt. Finer		
Vet Wt. & Tare Dry Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soll Moisture Content % Dry Wt. Of Sample from Initial Moi		38.1 38.1 19.0 12.5 9.5 4.75	Weight 1		ъ _	Sieve No. 10 20 40 60 100 200	Wei	Total Wil. Finer	Analysis	
Tare No. Wet Wt. & Tare Dry Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial Moi		38.1 25.4 19.0 12.5 9.5 4.75	Neight Retained F			Sieve No. 10 20 20 100 100 200 200 200	Weight Retaine	Total Wr.		
Mosture Content Mosture Mosture Content Mosture Mostur		38.1 25.4 19.0 12.5 9.5 4.75 10	Retained P	7 7		Sieve No. 10 20 20 100 200 200 200	Retaine			% Finer
Tare No. Wet Wt. & Tare Dry Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial Moi			SEEW			10 20 40 60 100 200		Than	Than	Inan Orig
Wet Wt. & Tare Dry Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial Moi		25.4 19.0 12.5 9.5 9.5 4.75	SEEW			20 40 60 100 200		50.0	100.0	77.1
Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial Moi		19.0 12.5 9.5 4.75 10	SEEW			40 100 200		45.9		70.8
Water Wt. Tare Wt. Mut. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial Moi		12.5 9.5 4.75 10	SEEW			100			85.0	65.5
Mt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial Moi		9.5 4.75 10	SEEW			100				
Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial Moi	Na I	4.75	SEEW			200				55.2
Moisture Content % Dry VVt. Of Sample from Initial Moi	a l	10	SEE WA							47.2
Dry Wt. Of Sample from Initial Moi		-		SEE WASHED SIEVE		Pan	30.6			
THE PERSON OF TH		***************************************				Total	50.0			
	7					Unwashed Wt.	Wt.=			
-(IOOXVVEI SOIL VVI.)/(IOO + IIIIIBI MIDISIULE)	Tat	otal				Tare		Wt. Passin	Passing #200 =	
Starting	ŭ ŭ	ading	Temo		Corr. Reading		SORTIZOR			
% - #10	**********	n	(00)	¥	2	Zr (cm)	(min)	D (mm)	(%) N	N.(%-#10)
50.0 0.771	0.5	32.0	21.0	0.01348	25.5	12.1	4.917		51.0	39.3
50.0 0.771	-	30.0	21.0	0.01348	23.5	12.4				36.2
	2	26.0	21.0	0.01348	19.5		2.557		39.0	30.1
	4	24.0	21.0	0.01348	17.5					27.0
	8	21.5	21.0	0.01348	15.0			0.018	30.0	23.1
50.0 0.771	15	17.0	21.0	0.01348	10.5					16.2
50.0 0.771	30	16.0	21,0	0.01348	9.5	14.7	0.701	0.00		14.6
	90	14.0	21.0	0.01348	7.5			-		4-
	120	12.0	21.0	0.01348	5.5				11.0	
	240	11.0	22.0	0.01332						
50.0 0.771	480	10.0	22.0	0.01332			0.181	0.002		5.4
	1440	8.5	22.0	0.01332	2.0		0.105		4.0	3.1
Hydrometer #: 794968	ତ	Graduate #:	1		Dispersing A	Agent: Sodium Hex	lium Hex		Amount: 125m	Smi
Density of Solids:		• 1								
Description of Sample:										

PROJECT NO. K 2585

CLIENT Mount Pollcy Mining Corp. Attn: C.C. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

Mount Polley Mine

Likely

CONTRACTOR

PROCTOR NO. 1

DATE TESTED 2008. May. 27 DATE RECEIVED 2008. May. 22 DATE SAMPLED 2008. May. 12

INSITU MOISTURE N/A %

Client SAMPLED BY

DJ

TESTED BY

Borrow Area

SUPPLIER

SOURCE

C-S6-%S-01/08

MATERIAL IDENTIFICATION

MAJOR COMPONENT TILL

75MM

DESCRIPTION **ROCK TYPE**

COMPACTION STANDARD

Standard Proctor,

ASTM D698

Automatic

COMPACTION PROCEDURE

A: 101.6mm Mold,

Passing 4.75mm

RAMMER TYPE

Moist

PREPARATION

OVERSIZE CORRECTION METHOD ASTM 4718

RETAINED 4.75mm SCREEN

19.0%

OVERSIZE SPECIFIC GRAVITY

2.66

TOTAL NUMBER OF TRIALS

	2100	E T	T					7
	2075				<u>-</u>			-
/m3)	2050							4
/ (Rg	2050 2025 2000 1975 1950		/		1			_
SIT	2000	El ,	<i>\</i>			<u>\</u> 2		1
	1975	4						4
DRY	1950	El/a						-
	1925	<u> </u>						_
		自一一	+	1111		1111	111	لا
		8	9 1 MOIST	0 1 URE C				4

10.2
10.2
12.5
L4.0
8.2

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	2040	10.5
OVERSIZE CORRECTED	2140	8.5

COMMENTS

SPECIFIC GRAVITY = 2.668 (COARSE)

SPECIFIC GRAVITY = 2.683 (FINE)

Page 1 of 1

2008.May.30

SIEVE AND 1300 IS 1: LORT 10 20 40 60 SERIES

1301 Kelliher Road Prince George CC V2L5S8 Phone (250)564-4304; fax (250)- 4-9323

PROJECT NO. K 2585

CLIENT Mount Pollcy Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

A'TTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

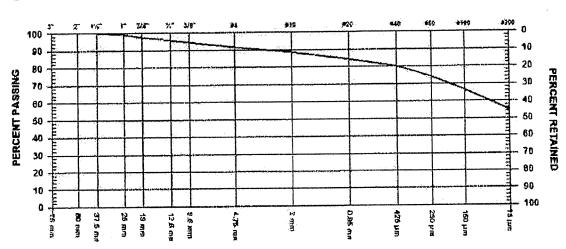
Mount Polley Mine

Likely

CONTRACTOR

SIEVE TEST NO. 2

DATE RECEIVED 2008. May. 22 DATE TESTED 2008. May. 23 DATE SAMPLED 2008. May. 12

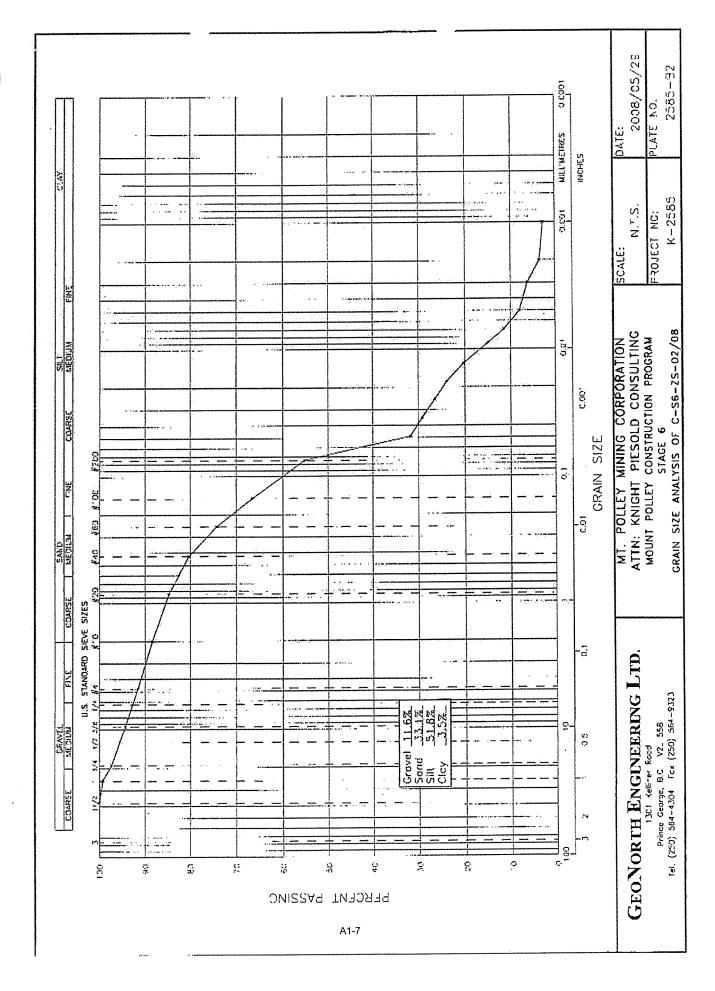

Borrow Area SUPPLIER C-\$6-X\$-02/08 SOURCE

Stage 6

SPECIFICATION

MATERIAL TYPE TILL

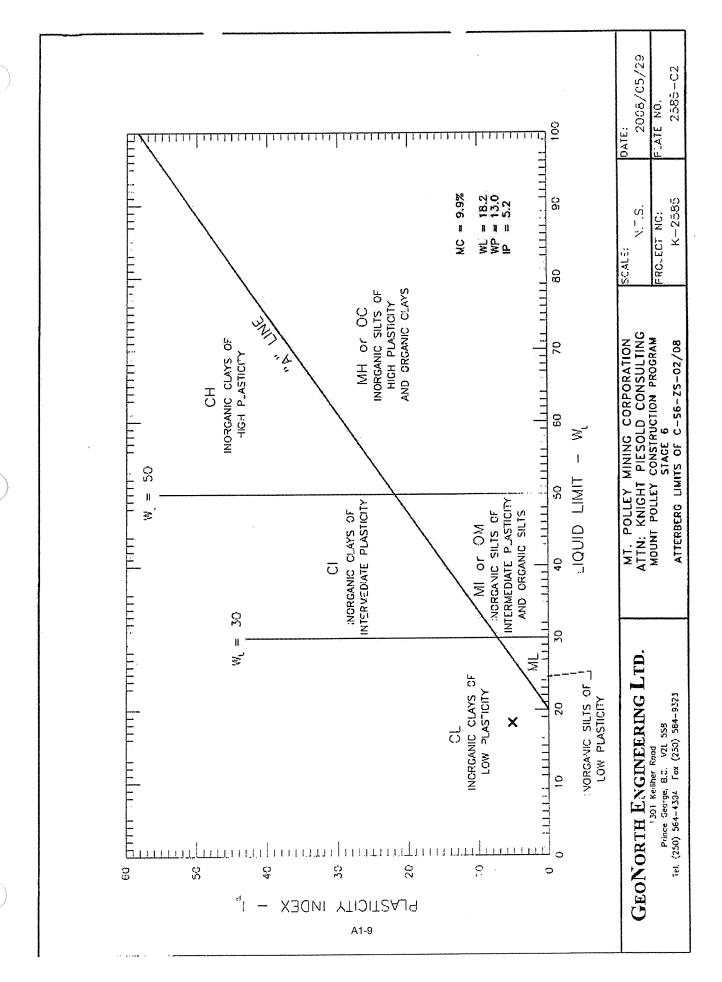
Client SAMPLED BY DJ **TESTED BY** TEST METHOD WASHED


GRAVE	L SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 nun 12.5 mm 9.5 mm	100.0 99.3 97.4 95.6 94.4	·

SAN	ND SIZES	AND FINES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	20 40 60 100	4./5 mm 2.00 mm 850 μm 425 μm 250 μm 150 μm	88.4 84.5 80.0 73.9 66.6	

COMMENTS

Page 1 of 1


2008, May, 29

Hydrometer Analysis

GeoNorth EngineeringTest Designation: ASTM D-422

i est designador. Ad i ivi	3000	731-0 14	***************************************						Data: Mate	20.20.08	
CHERT: MOU	m rolley	CHERT: MOUNT POLICY MINING COLD.		***************************************	***************************************		-				
Project Name: MPCP - Stage 5	ie: MPCP	- Stage 6								C067-V	
Source/Location: C-S6-ZS-02/08	ation: C-S	36-ZS-02/08							Type: TILL		
Sample #:			Test#;		Hole #:		Depth:		Time:		
Sampled By: Client	Client			Tested By: DJ	2				Checked By: NK	3y: NK	
Date Sampled: 05.12.08	3d: 05.12.0	38		Date Recei	Date Received: 05.22.08	08	:		Date Teste	Date Tested: 05.26.08	
Initial	Initial Moisture Content	Content		Sieve Analysis	nalvsis			Hydrom	Hydrometer Sieve Analysis	Analysis	
					X	% Finer					
						Than			Total Wt.		% Finer
				Weight	Total Wt.	Orig.			Finer	% Finer	Than Orig
			Sieve No.	Ketained	Passing	Samp.	DIEVE NO.	Leiamen	50.0		
TAIS NO.	Tars	1261	25.4				20	2.1	47.9		
5 2	מות מות	1163 7	19.0				40		45	.06	80.3
Mater Wi		7.76	12.5		,		09			84.0	74.3
Tare Wt		181.4	9.5				100	4.3			
Wt Of Dry Soil	ioi	982.3					200		31.3	62.6	55.3
Moisture Content %	ontent %	6.6	***************************************		SEE WASHED SII	SIEVE	Pan	31.3			
Dry Wt. Of Sa	Imple from	Dry Wt. Of Sample from Initial Moisture					Total	50.0			
							Unwashed Wt.	VVI.≑			
(100xWet Sai	I Wt.)/(100 +	=(100xWet Soil Wt.)/(100 + Initial Moisture) 1	Total				Tare		Wt. Passing	ig #200 =	
						Corr.				,	
Starting		Elapsed	Reading	Temp		Reading	ė	SQRT(Zr)/T		1	
Wt. (g)	% - #10	Time (min)	æ	(gc)	×	R,	Zr (cm)	(min)	리	2	14%).N
50.0	0.884	0.5	28.0	21.0							
50.0	0.884		24.5		0.01348	18.0			0.049		-
50.0	0.884	2	23.0	21.0				2.605			
50.0	0.884	4			0.01348	-				30.0	26.5
50.0	0.884			2		_					
50.0	0.884	٠		£						23.0	20.3
50.0	0.884	30									
50.0	0.884	09	13.0			3 6.5					
50.0	0.884	120	11.0		,	:					
50.0	0.884	240	-		1	!					
50.0	0.884		8.5		0.01332	2 2.0		0.182	0.002	4.0	3.5
50.0	0.884	1440								3	
Hvdrometer #: 794968	#: 794968	·	Graduate	#: 2		Dispersing	Agent:	Sodium Hex		Amount: 1	25mi
Density of Solids:	olids:										-
Description of Sample	of Sample	ئمز									
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				·				COTTON

1301 Kelliher Road Prince George C V2L558 Phone (250)564-4304; fax (250). .4-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

C.C. Knight Piesold Consulting

TO Mount Polley Mining Corp. Alln: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

Mount Polley Mine

Likely

CONTRACTOR

PROCTOR NO. 2

DATE TESTED 2008. May. 27 DATE RECEIVED 2008. May. 22 DATE SAMPLED 2008. May. 12

INSITU MOISTURE N/A %

SAMPLED BY

Client

TESTED BY

DJ

SUPPLIER

Borrow Area

SOURCE

C-56-ZS-02/08

MATERIAL IDENTIFICATION

MAJOR COMPONENT TILL

SIZE

37.5MM

DESCRIPTION **ROCK TYPE**

COMPACTION STANDARD

COMPACTION PROCEDURE

RAMMER TYPE

PREPARATION

OVERSIZE CORRECTION METHOD AS'I'M 4718

RETAINED 4.75mm SCREEN OVERSIZE SPECIFIC GRAVITY

TOTAL NUMBER OF TRIALS

Standard Proctor,

ASTM D698

A: 101.6mm Mold,

Passing 4.75mm

Automatic

Moist

8.0 %

2.67 4

2100	T. I	[1			
2075									
DRY DENSITY (Kg/m3) 2025 2020 1975 1950 1925	E		***************************************		سو	_			
5 2025	E		,	/			1		
≥ 2000			-/	<u> </u>	·/······	·····		1	
<u>Ø</u> 1975		 	_	<u></u>				-\	
1950		/	. <u> </u>	rue escetations			···	· • • • • • • • • • • • • • • • • • • •	++
岩 1925	H -,	/_	,		, o 1				\3
1900	EI /								
1875	E	ш	Ш	Ш	Ш	Ш	Ш	1111	
	5	6 7		1 3 9		0 1		2 1	3 14
	MOISTURE CONTENT (%)								

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)	
1	2214	2031	9.0	
2	2261	2026	11.6	
3	2185	1923	13.6	
4	1972	1878	5.0	

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	2040	10.0
OVERSIZE CORRECTED	2080	9.5

COMMENTS

SPECIFIC GRAVITY = 2.675 (COARSE)

SPECIFIC GRAVITY = 2.673 (FINE)

Page] of l

2008.May.30

1301 Kelliher Road Prince George, JJ V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

Mount Pollcy Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

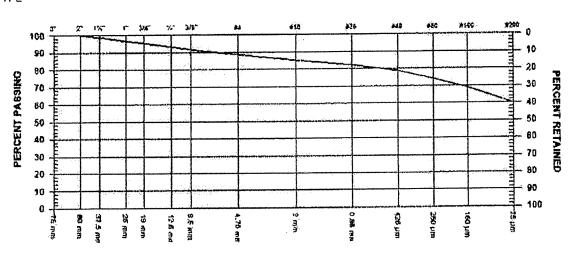
Likely

CONTRACTOR

SIEVE TEST NO. 8

VOL -1NO

DATE RECEIVED 2008. Jul. 21 DATE TESTED 2008. Jul. 24 DATE SAMPLED 2008. Jul. 17


SUPPLIER C-S6-XS-03-08 SOURCE

Client SAMPLED BY SR TESTED BY

TEST METHOD WASHED

SPECIFICATION

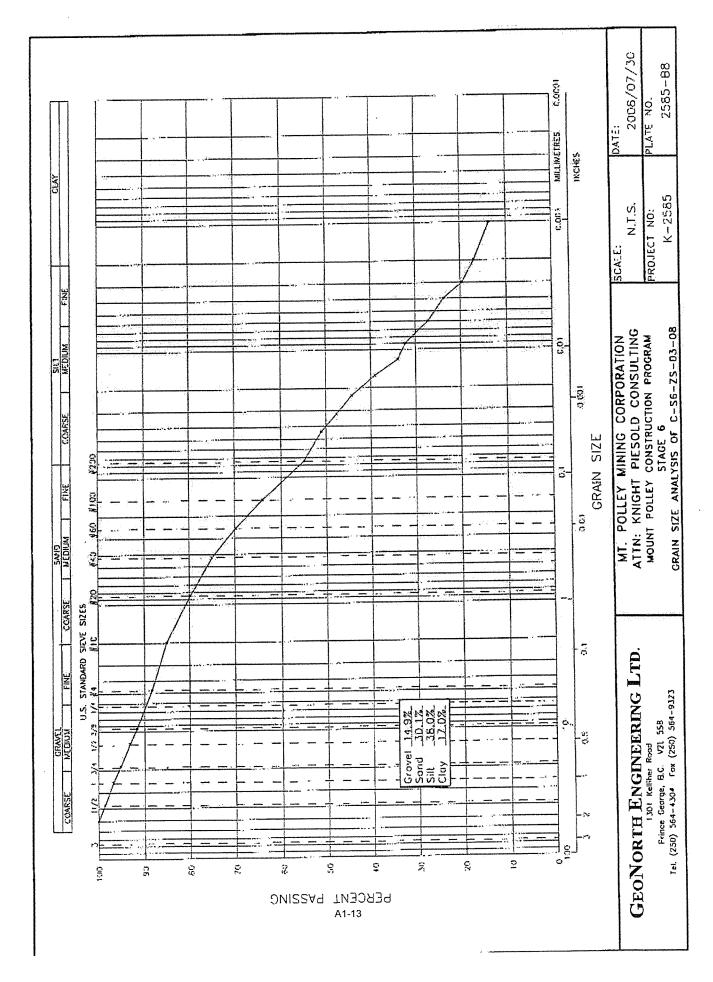
MATERIAL TYPE TILL

GRAVE	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 nm 12.5 mm 9.5 mm	100.0 98.6 96.8 95.3 93.7	

SAND S	IZES AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4 No. 10 No. 20 No. 40 No. 60 No. 10 No. 20	850 μm 425 μm 250 μm 150 μm	88.4 85.1 82.0 78.7 74.3 68.9 60.2	

MOISTURE CONTENT 11.0%

COMMENTS BORROW PIT


Page 1 of 1

2008.Jul.29

GooNorth Engineering Ltd.

		Salico te			C						700 V	
Total #: Hole #: Depth: Checked By. NK Checked By. NK Diate Received: 07.21.08 Checked By. NK	Project Nar	The MPCP	- Stage 6							Project #:	K-2585	
Teste Hole #: Teste Hole #: Teste Teste Teste Hole #: Teste	Source/Loc	ation: C-S	6-ZS-03-08						-	Type: TILL		
Particular Tested By. SR Step	Sample #:			Test#:	-	Hole #:		Depth:		Time:		
Date Received: 07.21.08 Pate	Sampled By	r. Client			Tested By:	SR				Checked B	Ž	
Sieve Analysis Hydrometer	Date Samp	ed: 07.17.0	86		Date Recei	ived: 07.21.	80			Date Teste	d: 07.25.08	
Sieve No. Siev	Initia	Moisture	Content		Sieve A	nalysis			Hydrom	eter Sieve	Analysis	
Sileton No.							% Finer			1941 F		, de la 78
Sieve No. Siev					Mainhe	Total We	I nan Orio		Woinht	Finer		A ruiei Than Oria
Sample from Initial Moisture Sample	موددان _{دونند}			Sieve No	Refained	Passing	Samo	Sieve No.	Retained	Than		Samp.
& Tare 25.4 25.4 46.9 93.8 X Tare 19.0 25.4 41.0 82.0 V T. 19.0 40.0 2.8 44.1 88.2 V T. 19.0 19.0 4.75 4.7	Tare No			38.1				10		50.0	100.0	
VI.	∞	Tare		25.4				20		46.9		
VL. 12.5 FIG. 3.1 41.0 82.0 t. 1.0.6 9.5 Pan 3.4 37.6 75.2 8.0 re Content % 11.0 4.75 Pan 20.3 32.3 64.6 75.2 or Content % 11.0 4.75 Pan 20.0 5.3 32.3 64.6 75.2 or Sample from Initial Moisture Total A.75 Pan 32.3 64.6 75.2 75.2 st Soil W.L./(100 + Initial Moisture) Reading Corr. Initial Moisture Corr. Initial Moisture M.V. Passing #200 = A.75	0.5	are		19.0				40				
Figure F	1			12.5				9				69.8
Content % 110 4.75 Pan 32.3 32.3 64.6 Pan 120 50.0	Tare W			9.5				100				
Complet from Initial Moisture Complet from Initial Moistu	W Of Day	Soil		4.75				200	5			
Sample from Initial Moisture Total Time (min) Total Time (min) Total Time (min) Time (min) Reading Total Time (min) Time (min	Moisture C	ontent %	11.0			ASHED SI	EVE	Pan	32.3			
Correction Cor	Div Wt Of S	ample from	Initial Moisture					Total	50.0			
Part								Unwashed	Wt.=			
Corr. Corr	(100xWet Sc	iii VML.)/(100 +	,,	Total				Tare				
3 Keading lemp Keading lemp K R° Zr (cm) (min) D (min) N (%) N (%) 0.0 0.851 0.05 38.0 0.01317 32.0 11.0 4.694 0.062 64.0 0.0 0.851 1 36.0 23.0 0.01317 28.0 11.7 2.468 0.044 60.0 0.0 0.851 2 34.0 23.0 0.01317 28.0 17.7 2.468 0.044 60.0 0.0 0.851 2 34.0 23.0 0.01317 28.0 17.7 2.468 0.023 55.0 0.0 0.851 4 32.0 23.0 0.01317 23.0 13.2 0.031 0.012 40.0 0.0 0.851 4 32.0 23.0 0.01317 20.0 13.2 0.047 40.0 0.0 0.851 450 22.0 23.0 0.01317 14.0 0.341 0.006 32.0							Corr.		SOBT(7.1)T			
0.05 0.851 0.05 38.0 23.0 0.01317 32.0 11.0 4.694 0.062 64.0 0.0 0.851 0.5 23.0 0.01317 30.0 11.3 3.368 0.044 60.0 0.0 0.851 2 34.0 23.0 0.01317 28.0 11.7 2.416 0.032 56.0 0.0 0.851 4 32.0 23.0 0.01317 28.0 17.32 0.023 52.0 0.0 0.851 8 29.0 23.0 0.01317 20.0 13.0 0.015 46.0 0.0 0.851 15 25.0 23.0 0.01317 19.0 13.2 0.05 40.0 0.0 0.851 15 25.0 23.0 0.01317 14.0 0.34 0.00 32.0 0.0 0.851 240 17.5 23.0 0.01317 14.0 0.34 0.003 23.0 0.0 0.851 144	Starting	*	Elapsed Time (min)	Keading	dua i	-	20 C	Zr (cm)	(min)		% ¥	N*(%#10)
1 36.0 23.0 0.01317 30.0 11.3 3.368 0.044 60.0 60.0 1 34.0 23.0 0.01317 28.0 11.7 2.416 0.032 56.0 62.0 1 32.0 23.0 0.01317 28.0 17.2 0.023 52.0 62.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 O	,	S C				l	ľ				
2 34.0 23.0 0.01317 28.0 11.7 2.416 0.032 56.0 4 32.0 23.0 0.01317 26.0 12.0 1.732 0.023 52.0 8 29.0 23.0 0.01317 20.0 13.0 0.0931 0.016 46.0 15 26.0 23.0 0.01317 20.0 13.2 0.062 0.009 38.0 60 25.0 23.0 0.01317 16.0 13.7 0.477 0.009 38.0 60 22.0 23.0 0.01317 14.0 14.0 0.341 0.004 28.0 240 17.6 23.0 0.01317 11.6 14.4 0.245 0.003 23.0 480 16.0 23.0 0.01317 10.0 14.4 0.245 0.002 20.0 1440 14.0 0.102 0.0131 8.0 15.0 0.002 20.0 23.0 0.01317 8.0 <	0.00	0.00 1.000 1.000 1.000										
4 32.0 23.0 0.01317 26.0 12.0 1.732 0.023 52.0 8 29.0 23.0 0.01317 23.0 12.5 1.250 0.016 46.0 15 26.0 23.0 0.01317 20.0 13.0 0.931 0.012 40.0 30 25.0 23.0 0.01317 19.0 13.7 0.662 0.009 38.0 60 22.0 23.0 0.01317 14.0 0.341 0.006 32.0 240 17.5 23.0 0.01317 11.5 14.4 0.245 0.003 23.0 480 16.0 23.0 0.01317 10.0 14.6 0.175 0.002 20.0 1440 14.0 0.102 0.01317 8.0 15.0 0.002 20.0 1440 14.0 0.102 0.001 16.0 0.001 16.0 23.0 0.01317 8.0 0.102 0.001 0.001 <	36.0					l						
8 29.0 23.0 0.01317 23.0 12.5 1.250 0.016 46.0 46.0 15.0 25.0 23.0 0.01317 20.0 13.0 0.931 0.012 40.0 60 25.0 23.0 0.01317 19.0 13.7 0.662 0.009 38.0 12.0 22.0 23.0 0.01317 16.0 13.7 0.477 0.006 32.0 240 17.5 23.0 0.01317 11.5 14.4 0.245 0.003 23.0 23.0 14.6 0.175 0.002 20.0 1440 14.0 23.0 0.01317 10.0 14.6 0.175 0.002 20.0 1440 14.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 16.0 0.102 0.001 0.102 0.001 0.102 0.001 0.102 0.10	20.02											
15 26.0 23.0 0.01317 20.0 0.662 0.009 38.0 6.0 22.0 23.0 0.01317 19.0 13.7 0.477 0.006 32.0 22.0 23.0 0.01317 16.0 13.7 0.477 0.006 32.0 22.0 23.0 0.01317 14.0 14.0 0.341 0.004 28.0 240 17.5 23.0 0.01317 11.5 14.4 0.245 0.003 23.0 240 16.0 23.0 0.01317 10.0 14.6 0.175 0.002 20.0 1440 14.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23	50.05											
30 25.0 23.0 0.01317 19.0 13.2 0.662 0.009 38.0 60 22.0 23.0 0.01317 16.0 13.7 0.477 0.006 32.0 120 20.0 23.0 0.01317 14.0 14.0 0.341 0.004 28.0 240 17.5 23.0 0.01317 11.5 14.4 0.245 0.003 23.0 1480 16.0 23.0 0.01317 10.0 14.6 0.175 0.002 20.0 1440 14.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml	50 0					l.						
60 22.0 23.0 0.01317 16.0 13.7 0.477 0.006 32.0 12.0 23.0 0.01317 14.0 14.0 0.341 0.004 28.0 240 17.5 23.0 0.01317 11.5 14.4 0.245 0.003 23.0 23.0 14.0 23.0 0.01317 10.0 14.6 0.175 0.002 20.0 14.0 14.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 0.102 0.102 0.001 16.0 23.0 0.01317 8.0 0.102 0.102 0.001 16.0 23.0 0.01317 8.0 0.102 0.102 0.001 16.0 0.102 0.001 16.0 0.102 0.001 16.0 0.102 0.001 16.0 0.102 0.001 0.001 0.102 0.001	50.0											
120 20.0 23.0 0.01317 14.0 0.341 0.004 28.0 240 17.5 23.0 0.01317 11.5 14.4 0.245 0.003 23.0 23.0 16.0 23.0 0.01317 10.0 14.6 0.175 0.002 20.0 1440 14.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 23.0 0.001 16.0 23.0 0.01317 25.0 0.001 16.0 0.102 0.001 16.0 0.001 16.0 0.001 16.0 0.102 0.001 16.0 0	50.0							-	: :			
240 17.5 23.0 0.01317 11.5 14.4 0.245 0.003 23.0 480 16.0 23.0 0.01317 10.0 14.6 0.175 0.002 20.0 1440 14.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 Amount: 125ml	50.0											
480 16.0 23.0 0.01317 10.0 14.6 0.175 0.002 20.0 20.0 20.0 23.0 0.01317 8.0 15.0 0.102 0.001 16.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	50.0											
1440 14.0 0.001317 8.0 15.0 0.102 0.001 15.0 15.0	50.0								1			
Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125mi	50.0										<u>.</u>	
	Hydromete		8	raduate	#: 1		Dispersing		dium Hex			Zomi
	Density of	Solids:							,			
	Description	of Sample										

Geonorth Engineerir Lta. 1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Altn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

CONTRACTOR

DATE TESTED 2008.Jul.25 DATE RECEIVED 2008.Jul.21 DATE SAMPLED 2008.Jul.17 PROCTOR NO. 8

INSITU MOISTURE N/A % Clical SAMPLED BY

SR **TESTED BY**

SUPPLIER

C-S6-ZS-03-08 SOURCE

MATERIAL IDENTIFICATION MAJOR COMPONENT TILL. 38MM

SIZE DESCRIPTION **ROCK TYPE**

COMPACTION STANDARD

COMPACTION PROCEDURE

RAMMER TYPE

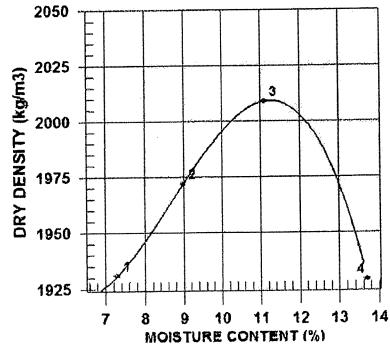
PREPARATION OVERSIZE CORRECTION METHOD ASTM 4718

RETAINED 4.75mm SCREEN OVERSIZE SPECIFIC GRAVITY

TOTAL NUMBER OF TRIALS

ASTM D698

Mount Polley Mine


Likely

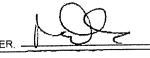
Passing 4.75mm Automatic Moist

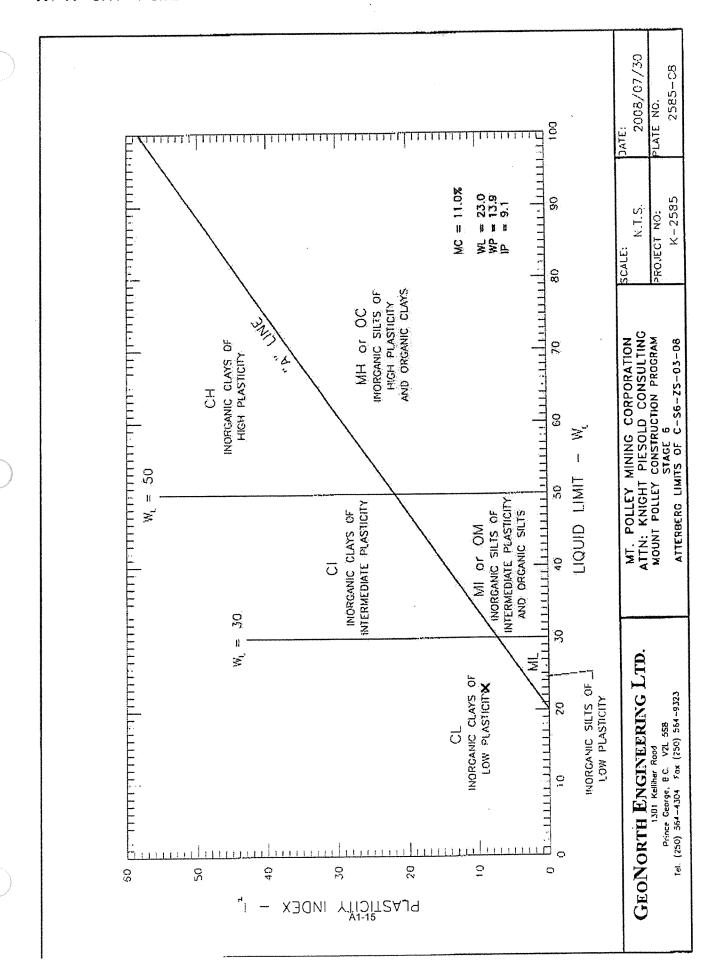
A: 101.6mm Mold,

Standard Proctor,

11.0% 2.73 4

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1,	2072	1931	7.3
2	2149	1972	9.0
.3	2232	2009	11.1
4	2193	1,929	13.7
			<u></u>


	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	2010	11.5
OVERSIZE CORRECTED	2070	10.5


COMMENTS

SPECIFIC GRAVITY (COARSE) = 2.732

SPECIFIC CRAVITY (FINE) = 2.678

2008.Jul.29 Page 1 of 1 GeoNorth Engineering Ltd.

1301 Kelliher Road Prince George, B7 1/2L5\$8 Phone (250)564-4304; fax (250)56- _323

PROJECTNO, K 2585

CLIENT Mount Polley Mining Corp. Attn: cc Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold

P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

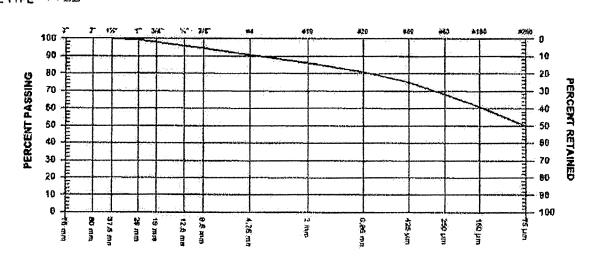
Mount Polley Mine

Likely

CONTRACTOR

TO

SIEVE TEST NO. 9


DATE RECEIVED 2008. Aug. 06 DATE TESTED 2008. Aug. 11 DATE SAMPLED 2008. Aug. 04

SUPPLIER C-S6-ZS-04/08 SOURCE

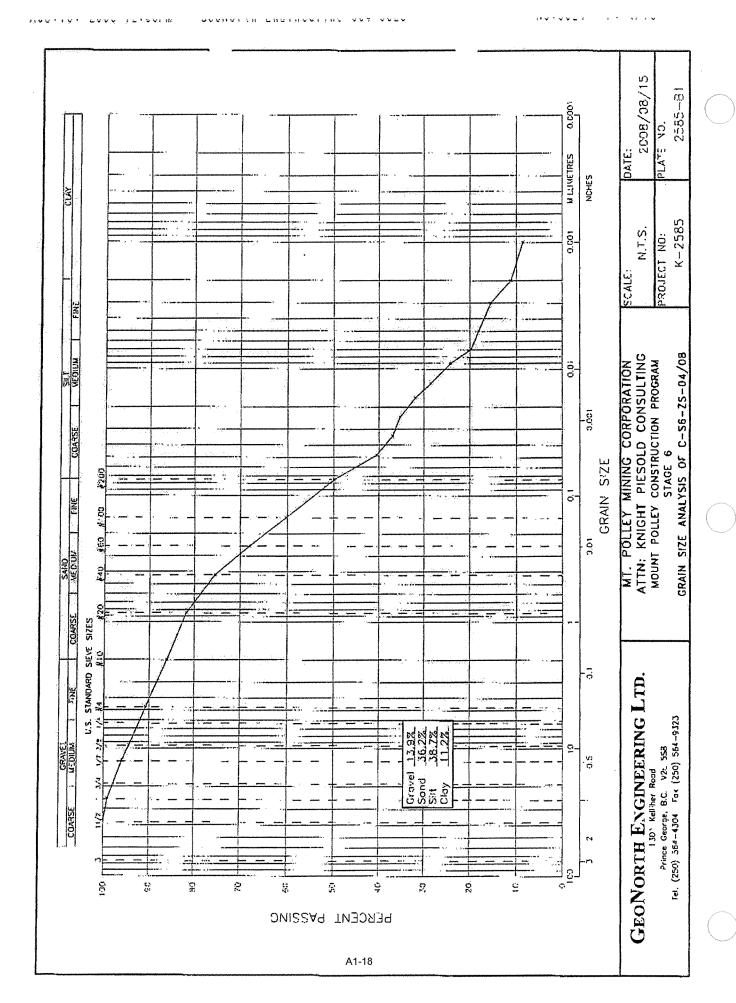
SPECIFICATION

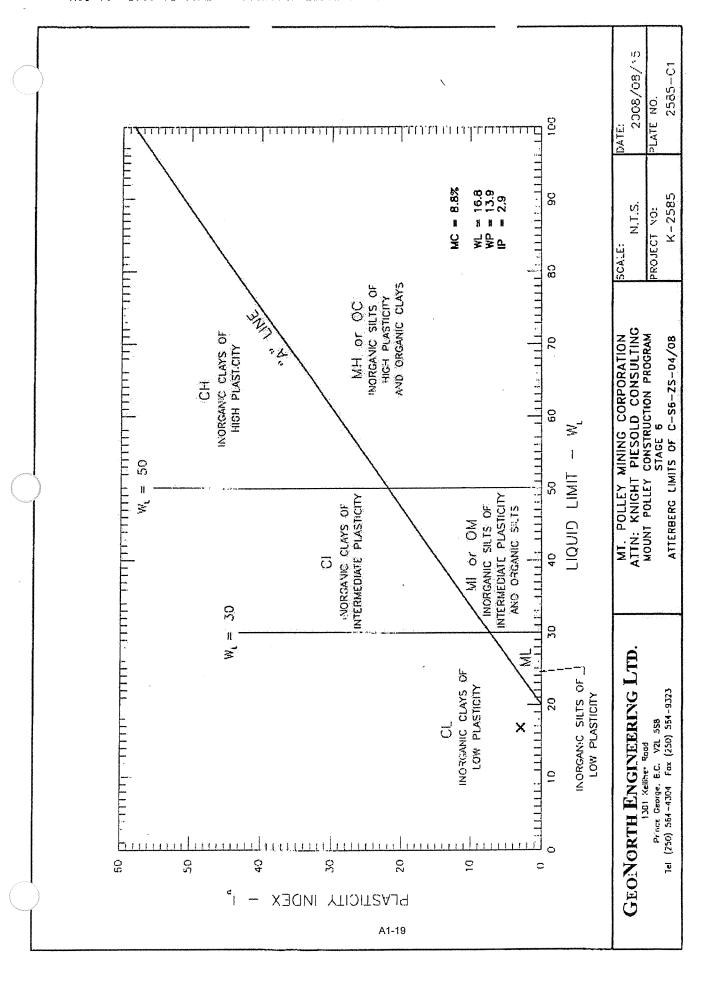
MATERIAL TYPE "ILL

Client SAMPLED BY SR **TESTED BY** TEST METHOD WASHED

GRAVE	L SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm mm mm	100.0 99.2 97.9 96.0 94.5	

SAN	ND SIZE	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No.	1 10 20 40 60 100	4.75 mm 2.00 mm 850 µm 425 µm 250 µm 150 µm	90.8 86.1 80.8 75.0 68.1 60.8	
No.	200	75 µm	19.9	


8.8% MOISTURE CONTENT


COMMENTS

SW CORNER PE BORROW PIT

Page 1 of 1 2008.Aug.15 GeoNorth Engineering Ltd.

Fell ## Hole #: Depth: Depth: Depth: Time Hole ## K-258 Content	Project #: K-2589 Project #: K-2589 Project #: K-2589	Client: Mo	unt Polley	Client: Mount Polley Mining Corp. / Kr	Knight Piesold	sold					Date: August	ust 15, 2008	
Triple T	Part	Project Na	me: MPCP	- Stage 6							Project #:	K-258	
Property	Properties Pro	Source/Lo	catron: C-	S6-ZS-04/08	- 1						Type: TILI		
Part	Figure 2014 0.06 Checked By, NK Checked By,	Sample #:			S		Hole #:		Depth:				
Initial Moisture Content	Initial Moisture Content Slave Analysis State Moisture Content Slave Analysis State Moisture Content Slave Analysis State Moisture Content Moisture Content Moisture Content Moisture Content Moisture Content Slave No. Retained Passing Samp Passing Pass	Sampled B	y: Client			Tested By:	SR				Checked F	NK NK	
No. Processing	No. Sieve No. Sieve No. Passing Sieve No.	Date Samp	led: 08.04	08		Date Rece	ived: 08,06.	08			Date Teste	ed: 08 13 08	
Note	Note	Initia	Moisture	Content		Sieve A	nalysis			Hydron	efer Sieve	Analysis	
Sieve No. Retained Passing Samp. Cotal Wt. Cotal Wt. Cotal Wt. Cotal Wt. Cotal Wt. Serve No. Retained Passing Samp. Sieve No. Retained Passing Samp. Cotal Weight Cotal Wt.	No. Proper line Proper l							% Finer					
Sieve No. Siev	Sieve No. Sieve No. Sieve No. Sieve No. Sieve No. Retailed Passing Samp. 100					Moinhe	Total Me	Than		11.00	Total Wit.	i	% Finer
No.	Viv. R Tare 1060.6 25.4 10.0 10.				Sieve No.	Retained	Passing	Samp.	Sieve No.	Refained	Than	% riner	Inan Orig
VVI. 8. Tare 1060.6 25.4 47.5 95.0 VVI. 8. Tare 1060.6 25.4 40.5 47.5 95.0 VVI. 8. Tare 70.2 15.0 40.0 4.5 37.5 95.0 EV.VI. 70.2 15.5 95.0 40.0 4.5 35.0 70.0 EV.VI. 70.2 1.5 EEW.VI. 70.2 9.0 4.5 35.0 70.0 Stunc Content % 8.0 1.0 4.5 35.0 70.0 70.0 Stunc Content % 8.0 9.0 4.5 35.0 70.0 70.0 Stunc Content % 8.0 9.0 4.5 35.0 70.0 70.0 Stunc Content % 8.0 9.0 4.5 35.0 70.0 70.0 Stunc Content % 8.0 8.0 8.0 8.0 8.0 8.0 8.0 Avit of Stunc from Initial Moisture % 1.0 1.0 1.0 4.5 35.0 70.0 St	VML & Tare 1060.6 25.4 19.0	Tare No.			38.1				10	صبيبين أب			1
Vol. of Taire 590.4 190	Nat. & Taire 990.4 19.0	Wet Wit. &	Tare	1060.6					22	2.			
State Content % Total	State Content % 70.2 12.5 12.5 12.5 10.0 1	Dry Wt. & 1	are	990.4					40				
Second Process Seco	Holy Sulface Interest 196.3 9.5 100 4.5 35.0 70.0 Sture Content % 8 bits 4.75 SEE WASHED SIEVE Pan 200 6.0 29.0 56.0 <td>Water Wit.</td> <td></td> <td>70.2</td> <td></td> <td></td> <td></td> <td></td> <td>9</td> <td>Aan</td> <td></td> <td></td> <td></td>	Water Wit.		70.2					9	Aan			
Of Diy Soil 794.1 4.75 A MSHED SIEVE Pan 200 6.0 29.0 58.0 Sture Content % 8.8 10 SEE WASHED SIEVE Pan 29.0 50.0 58.0 WL Of Sample from Initial Moisture Total Total Total Total Corr. Total Corr. ML Passing #200 = MANORE Soil WL, M(100 + Initial Moisture) Total Corr. Corr. Corr. ML Passing #200 = 60.0 0.861 Co.3 Corr. Reading Corr. Corr. WL Passing #200 = 50.0 0.861 Co.3 Co.0 Corr. Min) N (%) N (%-##) 50.0 0.861 Co.3 Co.0 Corr. Corr. Corr. Corr. Corr. M (%-##) N (%-##) 50.0 0.861 2 22.0 21.0 0.01348 23.5 12.4 3.52 0.048 47.0 50.0 0.861 4 27.0 21.0 0.01348 18.5	Color Soli 7941 4.75 Fate Fate 200 6.0 29.0 58.0 Fate 50.0 Fat	Tare Wt.		196.3					100				
With Of Sample from Initial Moisture Survet Soil With Of Sample from Initial Moisture Suil With Vit100 + Initial Moisture) SEE WASHED SIEVE Pan 29.0 Pan 29.0 Pan 29.0 Pan <	Viv. Of Sample from Initial Moisture Total Fan 29.0 Pan 29.0 Pan 29.0 Pan	Wt. Of Dry	Soil	794.1					200	1421			
WXVet Soll W1 O1 Sample from Initial Moisture Reading Form Total Form Form <t< td=""><td>WM. Of Sample from Initial Moisture Househed From Initial Moisture Corr. M. (%) N. (%)</td><td>Moisture C</td><td>ontent %</td><td>8.8</td><td></td><td>SEE W</td><td>ASHED SIE</td><td>VE</td><td>Pan</td><td>29.0</td><td></td><td></td><td></td></t<>	WM. Of Sample from Initial Moisture Househed From Initial Moisture Corr. M. (%) N. (%)	Moisture C	ontent %	8.8		SEE W	ASHED SIE	VE	Pan	29.0			
Ling Elapsed No.)/(100 + Initial Moisture) Total Corr. (100 + Initial Moisture) Co	ting Elapsed Reading Total Corr. Corr. SCRT(Zr)rIT W.t. Passing #200 = 50.0 0.861 7.32.0 21.0 0.01348 25.5 12.1 4.917 0.048 47.0 50.0 0.861 1 30.0 21.0 0.01348 25.5 12.1 4.917 0.048 47.0 50.0 0.861 1 30.0 21.0 0.01348 25.5 12.1 4.917 0.048 47.0 50.0 0.861 2 28.0 21.0 0.01348 25.5 12.7 2.525 0.034 47.0 50.0 0.861 4 27.0 21.0 0.01348 18.5 12.7 2.525 0.034 47.0 50.0 0.861 4 27.0 21.0 0.01348 18.5 1.27 2.525 0.034 47.0 50.0 0.861 15 21.0 0.01348 18.5 1.29 1.797 0.013 37.0 <tr< td=""><td>Dry Wt. Of S</td><td>ample from</td><td>Initial Moisture</td><td></td><td></td><td></td><td></td><td>Total</td><td>50.0</td><td></td><td></td><td></td></tr<>	Dry Wt. Of S	ample from	Initial Moisture					Total	50.0			
Flat	Table Parametric Table	(100×30Jet Se	1 10/14 1/14 100	Initial Mainture					Unwashed				
(g) %-#10 Time (mln) Reading Temp K R° Zr (cm) (min) D (mm) N (%-#1) 50.0 0.861 Time (mln) R 32.0 21.0 0.01348 25.5 12.1 4.917 0.066 51.0 50.0 0.861 1 30.0 21.0 0.01348 23.5 12.4 3.524 0.048 47.0 50.0 0.861 2 28.0 21.0 0.01348 21.5 12.7 2.525 0.034 47.0 50.0 0.861 4 27.0 21.0 0.01348 18.5 12.9 1.797 0.024 41.0 50.0 0.861 4 27.0 21.0 0.01348 18.5 1.287 0.034 43.0 50.0 0.861 15 23.0 21.0 0.01348 18.5 1.287 0.013 33.0 50.0 0.861 15 21.0 0.01348 16.5 13.6 0.034	(g) % - #10 Feading Feading Feading Feading Feading Corr. SORT(Zr)/IT N (%) N (%)<	ו יסטעופנים	11 VVI. JOI 100	IIIIIIIIII Midistale)	Total		-	and the same of th	Tare		Wt. Passir	#200	
Heading Feading Feading Feading Feading Feading SCRT(Zr)/T SCRT(Zr)/T N (%)	Hand Feading Temp Reading Temp Reading Feading Temp Reading SCRT(Zr/rT) N (%)							Corr.					
(9) % -#10 Time (min) R (0c) K R° Zr (cm) (min) D (mm) N (%) M°(%-#1) 50.0 0.861 0.05 32.0 21.0 0.01348 25.5 12.1 4.917 0.066 51.0 50.0 0.861 1 30.0 21.0 0.01348 21.5 12.4 3.524 0.048 47.0 50.0 0.861 2 28.0 21.0 0.01348 21.5 12.7 2.525 0.034 47.0 50.0 0.861 4 27.0 21.0 0.01348 18.5 1.287 0.017 37.0 50.0 0.861 1 25.0 21.0 0.01348 16.5 17.9 0.017 37.0 50.0 0.861 25.0 21.0 0.01348 16.5 14.4 0.490 0.007 23.0 50.0 0.861 20.0 18.0 21.0 0.01348 16.5 14.4 0.490 0.00	(9) % -#10 Time (min) R (0c) K R° Zr (cm) (min) D (mm) N (%) N°(%-#1) 50.0 0.861 0.05 32.0 21.0 0.01348 23.5 12.1 4.917 0.066 51.0 50.0 0.861 1 30.0 21.0 0.01348 23.5 12.4 3.524 0.048 47.0 50.0 0.861 2 28.0 21.0 0.01348 20.5 12.7 2.525 0.034 47.0 50.0 0.861 4 27.0 21.0 0.01348 20.5 12.9 1.797 0.024 41.0 50.0 0.861 4 27.0 21.0 0.01348 18.5 12.9 1.797 0.024 41.0 50.0 0.861 1 23.0 21.0 0.01348 16.5 13.6 0.034 43.0 50.0 0.861 1 23.0 21.0 0.01348 16.5 14.4	Starting		Elapsed	œ	Тетр		Reading		SQRT(Zr)/T			
0.5 32.0 21.0 0.01348 25.5 12.1 4.917 0.066 51.0 1 30.0 21.0 0.01348 23.5 12.4 3.524 0.048 47.0 2 28.0 21.0 0.01348 21.5 12.7 2.525 0.034 47.0 8 27.0 21.0 0.01348 18.5 12.7 2.525 0.024 41.0 15 25.0 21.0 0.01348 18.5 13.2 1.287 0.017 37.0 60 18.0 21.0 0.01348 16.5 13.6 0.0551 0.017 37.0 60 18.0 21.0 0.01348 14.0 0.683 0.003 28.0 60 18.0 21.0 0.01348 10.5 14.4 0.490 0.007 23.0 7480 13.0 21.0 0.01348 6.5 14.8 0.005 18.0 480 13.0 0.01348 6.5 <td< th=""><th>0.5 32.0 21.0 0.01348 25.5 12.1 4.917 0.066 51.0 1 30.0 21.0 0.01348 23.5 12.4 3.524 0.048 47.0 2 28.0 21.0 0.01348 21.5 12.7 2.525 0.034 47.0 4 27.0 21.0 0.01348 18.5 12.9 1.797 0.024 41.0 15 23.0 21.0 0.01348 18.5 13.2 1.287 0.017 37.0 60 18.0 21.0 0.01348 16.5 13.6 0.951 0.013 33.0 60 18.0 21.0 0.01348 16.5 14.4 0.490 0.007 23.0 120 17.0 21.0 0.01348 10.5 14.4 0.490 0.007 23.0 240 15.5 21.0 0.01348 6.5 14.8 0.002 13.0 480 13.0 21.0 0.</th><th>의</th><th>•</th><th>Time (min)</th><th></th><th>(<u>0</u></th><th></th><th>χ.</th><th></th><th>1</th><th></th><th>(%) N</th><th>N*(%-#10)</th></td<>	0.5 32.0 21.0 0.01348 25.5 12.1 4.917 0.066 51.0 1 30.0 21.0 0.01348 23.5 12.4 3.524 0.048 47.0 2 28.0 21.0 0.01348 21.5 12.7 2.525 0.034 47.0 4 27.0 21.0 0.01348 18.5 12.9 1.797 0.024 41.0 15 23.0 21.0 0.01348 18.5 13.2 1.287 0.017 37.0 60 18.0 21.0 0.01348 16.5 13.6 0.951 0.013 33.0 60 18.0 21.0 0.01348 16.5 14.4 0.490 0.007 23.0 120 17.0 21.0 0.01348 10.5 14.4 0.490 0.007 23.0 240 15.5 21.0 0.01348 6.5 14.8 0.002 13.0 480 13.0 21.0 0.	의	•	Time (min)		(<u>0</u>		χ.		1		(%) N	N*(%-#10)
1 30.0 21.0 0.01348 23.5 12.4 3.524 0.048 47.0 2 28.0 21.0 0.01348 21.5 12.7 2.525 0.034 43.0 4 27.0 21.0 0.01348 20.5 12.9 1.797 0.024 41.0 15 25.0 21.0 0.01348 18.5 13.2 0.017 37.0 30 20.5 21.0 0.01348 16.5 13.6 0.051 0.013 33.0 60 18.0 21.0 0.01348 14.0 14.0 0.683 0.003 28.0 60 18.0 21.0 0.01348 11.5 14.4 0.490 0.007 23.0 120 17.0 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 480 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 1440 11.5 21.0 0.	1 30.0 21.0 0.01348 23.5 12.4 3.524 0.048 47.0 2 28.0 21.0 0.01348 21.5 12.7 2.525 0.034 43.0 4 27.0 21.0 0.01348 18.5 12.9 1.797 0.024 41.0 15 25.0 21.0 0.01348 18.5 13.2 1.287 0.017 37.0 30 20.5 21.0 0.01348 16.5 13.6 0.951 0.013 33.0 60 18.0 21.0 0.01348 14.0 14.0 0.683 0.003 28.0 120 17.0 0.01348 10.5 14.4 0.490 0.007 23.0 240 15.5 21.0 0.01348 10.5 14.8 0.005 18.0 480 13.0 21.0 0.01348 6.5 15.2 0.178 0.001 13.0 1440 11.5 21.0 0.01348 <t< td=""><td>50.0</td><td>0.861</td><td>0.5</td><td>32.0</td><td></td><td></td><td></td><td></td><td>4.917</td><td></td><td></td><td>43.9</td></t<>	50.0	0.861	0.5	32.0					4.917			43.9
2 28.0 21.0 0.01348 21.5 12.7 2.525 0.034 43.0 4 27.0 21.0 0.01348 20.5 12.9 1.797 0.024 41.0 15 25.0 21.0 0.01348 18.5 13.2 1.287 0.017 37.0 30 20.5 21.0 0.01348 16.5 13.6 0.051 0.013 33.0 60 18.0 21.0 0.01348 11.5 14.4 0.490 0.003 28.0 120 17.0 21.0 0.01348 11.5 14.4 0.490 0.007 23.0 240 17.0 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 480 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 440 11.5 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 440 11.5 21.0 0.01348 6.5 15.5 0.178 0.002 13.0	2 28.0 21.0 0.01348 21.5 12.7 2.525 0.034 43.0 4 27.0 21.0 0.01348 20.5 12.9 1.797 0.024 41.0 15 25.0 21.0 0.01348 18.5 13.2 1.287 0.017 37.0 30 20.5 21.0 0.01348 16.5 13.6 0.051 0.013 33.0 60 18.0 21.0 0.01348 14.0 0.683 0.003 28.0 120 18.0 21.0 0.01348 11.5 14.4 0.490 0.007 23.0 120 17.0 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 480 13.0 21.0 0.01348 6.5 15.2 0.178 0.005 13.0 440 11.5 21.0 0.01348 6.5 15.2 0.104 0.005 13.0 440 11.5 21.0 0.01348 6.5 0.005 0.005 13.0 440 11.5	50.0	0.861		30.0								40.5
4 27.0 21.0 0.01348 20.5 12.9 1.797 0.024 41.0 8 25.0 21.0 0.01348 18.5 13.2 1.287 0.017 37.0 30 23.0 21.0 0.01348 16.5 13.6 0.951 0.013 33.0 60 18.0 20.5 21.0 0.01348 11.5 14.4 0.490 0.003 28.0 120 17.0 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 240 15.5 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 480 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 1440 11.5 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 480 11.5 21.0 0.01348 5.0 16.5 0.104 0.002 13.0 Adaduate #: 1	4 27.0 21.0 0.01348 20.5 12.9 1.797 0.024 41.0 8 25.0 21.0 0.01348 18.5 13.2 1.287 0.017 37.0 15 23.0 21.0 0.01348 16.5 13.6 0.951 0.013 33.0 60 18.0 21.0 0.01348 11.5 14.4 0.683 0.009 28.0 120 17.0 21.0 0.01348 10.5 14.4 0.490 0.007 23.0 240 15.0 21.0 0.01348 10.5 14.8 0.054 0.005 21.0 480 13.0 21.0 0.01348 6.5 15.2 0.178 0.003 18.0 1440 11.5 21.0 0.01348 6.5 15.2 0.004 13.0 480 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 480 11.5 21.0	50.0	0.861		28.0				:				37.0
8 25.0 21.0 0.01348 18.5 13.2 1.287 0.017 37.0 15 23.0 21.0 0.01348 16.5 13.6 0.951 0.013 33.0 60 18.0 21.0 0.01348 14.0 0.683 0.009 28.0 60 18.0 21.0 0.01348 11.5 14.4 0.490 0.007 23.0 240 17.0 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 480 13.0 21.0 0.01348 9.0 14.8 0.005 18.0 480 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 18.0 1440 11.5 21.0 0.01348 6.5 15.2 0.104 0.002 13.0 Adaduste #: 1 21.0 0.01348 5.0 15.5 0.104 0.001 10.0	8 25.0 21.0 0.01348 18.5 13.2 1.287 0.017 37.0 37.0 30.0 23.0 21.0 0.01348 16.5 13.6 0.951 0.013 33.0 33.0 20.5 21.0 0.01348 14.0 14.0 0.683 0.009 28.0 23.0 21.0 0.01348 11.5 14.4 0.490 0.007 23.0 23.0 240 15.5 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 240 15.5 21.0 0.01348 6.5 15.2 0.178 0.003 18.0 1440 11.5 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 1440 11.5 21.0 0.01348 5.0 15.5 0.104 0.001 10.0 12.0 14.0 0.001 11.5 21.0 0.01348 5.0 15.5 0.104 0.001 10.0 12.0 12.0 12.0 12.0 12.0 12.	50.0	0.861		27.0								35.3
15 23.0 21.0 0.01348 16.5 13.6 0.951 0.013 33.0 30 20.5 21.0 0.01348 14.0 0.683 0.009 28.0 60 18.0 21.0 0.01348 11.5 14.4 0.490 0.007 23.0 240 17.0 21.0 0.01348 9.0 14.6 0.348 0.005 21.0 480 13.0 21.0 0.01348 9.0 14.8 0.248 0.003 18.0 1440 11.5 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 Graduate #: 1 Amount: 125ml	15 23.0 21.0 0.01348 16.5 13.6 0.951 0.013 33.0 33.0 30.0 20.5 21.0 0.01348 14.0 14.0 0.683 0.009 28.0 20.5 21.0 0.01348 11.5 14.4 0.490 0.007 23.0 240 15.5 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 240 15.5 21.0 0.01348 9.0 14.8 0.248 0.003 18.0 1440 11.5 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 21.0 0.01348 6.5 15.5 0.104 0.001 10.0 20.0 20.0 20.0 20.0 20.0 20.	20.0	0.861		25.0								31.9
30 20.5 21.0 0.01348 14.0 14.0 0.683 0.009 28.0 60 18.0 27.0 0.01348 11.5 14.4 0.490 0.007 23.0 120 17.0 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 240 15.5 21.0 0.01348 9.0 14.8 0.248 0.003 18.0 480 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 1440 11.5 21.0 0.01348 5.0 15.5 0.104 0.001 13.0 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml	30 20.5 21.0 0.01348 14.0 0.683 0.009 28.0 60 18.0 27.0 0.01348 11.5 14.4 0.490 0.007 23.0 120 17.0 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 480 13.0 21.0 0.01348 9.0 14.8 0.248 0.003 18.0 1440 11.5 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml	20.0	0.861		23.0		1						
60 18.0 21.0 0.01348 11.5 14.4 0.490 0.007 23.0 23.0 120 17.0 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 21.0 21.0 0.01348 9.0 14.8 0.248 0.003 18.0 1440 11.5 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 21.0 0.01348 5.0 15.5 0.104 0.001 10.0 20.0 21.0 0.01348 2.0 15.5 0.104 0.001 10.0 20.0 20.0 20.0 20.0 20.0 20.	60 18.0 21.0 0.01348 11.5 14.4 0.490 0.007 23.0 23.0 120 17.0 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 240 13.0 21.0 0.01348 9.0 14.8 0.248 0.003 18.0 1440 11.5 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 21.0 0.01348 5.0 15.5 0.104 0.001 10.0 2002 13.0 21.0 21.0 0.01348 5.0 15.5 0.104 0.001 10.0 2000	50.0	0.861	30	20.5								
120 17.0 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 21.0 240 15.5 21.0 0.01348 9.0 14.8 0.248 0.003 18.0 15.0 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 1440 11.5 21.0 0.01348 5.0 15.5 0.104 0.001 10.0 Graduate #: 1 Dispersing Agent: Sodium Hex	120 17.0 21.0 0.01348 10.5 14.6 0.348 0.005 21.0 21.0 21.0 0.01348 9.0 14.8 0.248 0.003 18.0 18.0 1440 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 21.0 0.01348 5.0 15.5 0.104 0.001 10.0 Graduate #: 1 Dispersing Agent: Sodium Hex	50.0	0.861		18.0	21.0		11.5	14.4				-
240 15.5 21.0 0.01348 9.0 14.8 0.248 0.003 18.0 480 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 1440 11.5 21.0 0.01348 5.0 15.5 0.104 0.001 10.0 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml	240 15.5 21.0 0.01348 9.0 14.8 0.248 0.003 18.0 480 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 1440 11.5 21.0 0.01348 5.0 15.5 0.104 0.001 10.0 Amount: 125ml	50.0	0.861		17.0	21.0							18.1
480 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 1440 11.5 21.0 0.01348 5.0 15.5 0.104 0.001 10.0 Dispersing Agent: Sodium Hex Amount: 125ml	480 13.0 21.0 0.01348 6.5 15.2 0.178 0.002 13.0 1440 11.5 21.0 0.01348 5.0 15.5 0.104 0.001 10.0 Dispersing Agent: Sodium Hex Amount: 125ml	50.0	0.861		15.5					0			15.5
1440 11.5 21.0 0.01348 5.0 15.5 0.104 0.001 10.0	1440 11.5 21.0 0.01348 5.0 15.5 0.104 0.001 10.0	50.0	0.861		13.0		٠.			0			11.2
Graduate #: 1 Dispersing Agent: Sodium Hex	Graduate #: 1 Dispersing Agent: Sodium Hex	50.0			Ξ								8.6
Density of Solids:	Density of Solids: Description of Sample:	Hydrometer	#: 794968		aduate	-		Dispersing	Agent: Sod	um Hex		Amount: 12	5ml
	Description of Sample:	Density of 5	solids:					1		manufacture and a second of the second of th			

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

Mount Polley Mine

Likely

CONTRACTOR

PROCTOR NO. 9

DATE TESTED 2008. Aug. 12 DATE RECEIVED 2008. Aug. 06 DATE SAMPLED 2008. Aug. 04

INSITU MOISTURE N/A %

Client SAMPLED BY SR

TESTED BY

SUPPLIER

C-S6-ZS-04/08 SOURCE

MATERIAL IDENTIFICATION

MAJOR COMPONENT TILL 50MM

DESCRIPTION

ROCK TYPE

COMPACTION STANDARD

COMPACTION PROCEDURE

RAMMER TYPE

PREPARATION

OVERSIZE CORRECTION METHOD ASTM 4718 RETAINED 4.75mm SCREEN

OVERSIZE SPECIFIC GRAVITY TOTAL NUMBER OF TRIALS

Standard Proctor,

ASTM D698

A: 101.6mm Mold,

Passing 4.75mm

Automatic

Moist

9.0 %

2.65 4

2100 2075 DRY DENSITY (kg/m3) 2050 2025 2000 1975 1950 1925

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	2002	1892	5.8
2.	2093	1945	7.6
3	2239	2011	9.7
4	2212	1984	11.5

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	2050	10.0
OVERSIZE CORRECTED	2090	9.0

COMMENTS

SPECIFIC GRAVITY (COARSE) = 2.657

7

6

SPECIFIC GRAVITY (FINES) = 2.669

Page 1 of 1

1900

2008.Aug.15

MOISTURE CONTENT (%)

8

GeoNorth Engineering Ltd.

11

10

1301 Kelliher Road Prince George, F '2L5S8 Phone (250)564-4304; fax (250)564-3323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Atln: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold

P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martcl @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

Mount Polley Mine

Likely

CONTRACTOR

DATE RECEIVED 2008. Aug. 08 DATE TESTED 2008. Aug. 13 DATE SAMPLED 2008. Aug. 05 SIEVE TEST NO. 10

SUPPLIER C-S6-ZS-05/08 SOURCE

Client SAMPLED BY SR

TESTED BY TEST METHOD WASHED

SPECIFICATION

MATERIAL TYPE TILL

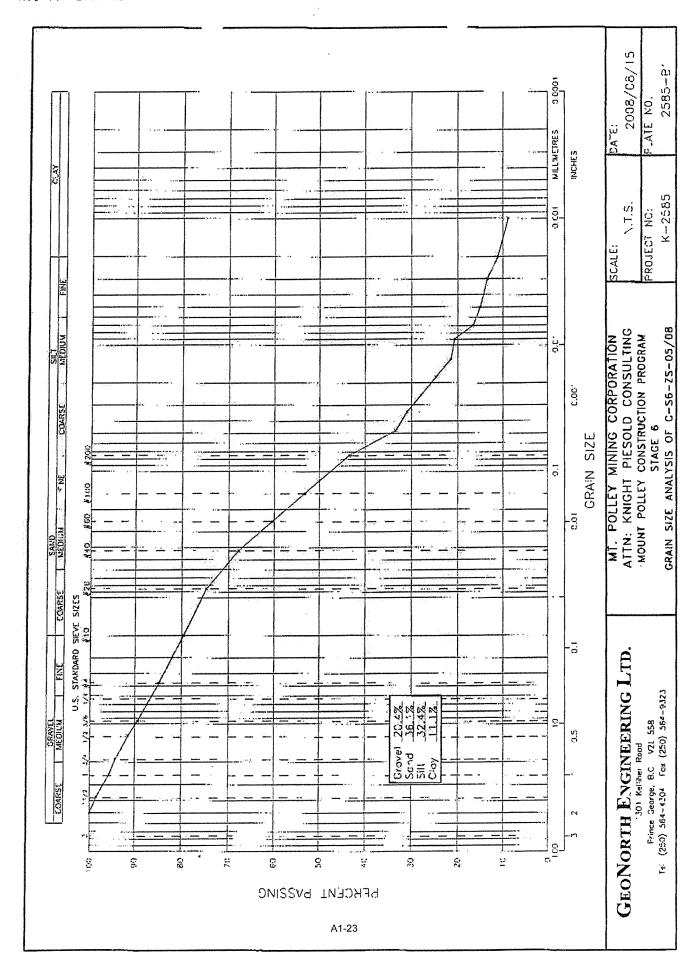
90	<u> </u>				<u> </u>			ļ			<u> </u>		
80	<u> </u>												
70	E					<u>L</u>				<u> </u>	<u> </u>		
60 -	<u>E</u>			_		<u> </u>			ļ				
5 0 -	<u> </u>	<u> </u>		<u> </u>		<u> </u>	ļ		ļ				
40 -	<u>E</u>	_	 	<u> </u>	ļ	_		-	<u> </u>		ļ		
30 -	<u>Ę</u>	 	ļ	<u> </u>	ļ	<u> </u>			ļ				
20	Ē.	1_	ļ	ļ		ļ			<u> </u>			tu promise a se	
10 -	<u>E</u>	بسبلة	ļ	<u> </u>	ļ	<u> </u>		<u> </u>	<u> </u>		<u> </u>		<u>-</u> 3-8
0.	E	1_	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>		<u></u>	<u></u>		

GRAVE	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 rnm 50 mm 37.5 mm 25 rnm 19 mm 12.5 mm	100.0 98.6 95.7 94.3 91.5	

	SAI	ND SIZES	S AND FINES	PERCENT PASSING	GRADATION LIMITS
	No. No. No. No.	10 20	4.75 mm 2.00 mm 850 μm 425 μm 250 μm 150 μm 75 μm	84.8 79.6 74.4 68.9 62.7 56.0 45.9	
ı				1 (

MOISTURE CONTENT 11.0%

COMMENTS


∱age 1 of 1

SW CORNER PH: BORROW

2008. Aug. 15

GeoNorth Engineering Ltd.

Project Name: MPCP - Stage 6 Source/Location: C-S6-ZS-05/08 Sample #: Sampled By: Client Date Sampled: 08.05.08 Initial Moisture Content Water Wt. & Tare 839. Dry Wt. & Tare 839. Dry Wt. & Tare 63. Water Wt. 196. Wyt. Of Dry Soil 63. Moisture Content % 11. Dry Wt. Of Sample from Initial Moisture Content % 11.	0 3 2 7 2 8 9	Test #: Test Date Stave No. Bate Date Weight		7 2 2 2				Project #: K-2585 Type: BROWN GL	Project #: K-2585 Type: BROWN GLACIAL	AI TII I
Source/Location: C-S6-ZS. Sample #: Sampled By: Client Date Sampled: 08.05.08 Initial Moisture Cont. Wet Wt. & Tare Dry Wt. & Tare Dry Wt. & Tare Moisture Content % Moisture Content % Dry Wt. Of Sample from Initial I	037798	#		77 -1-1		Dental.		Type: BRC	WN GLACI	AI TII I
Sample #: Sampled By: Client Date Sampled: 08.05.08 Initial Moisture Cont Wet Wt. & Tare Dry Wt. & Tare Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial I	030729	# 2	-	11-1-12		Panéh.				
Sampled By: Client Date Sampled: 08.05.08 Initial Moisture Cont Wet Wt. & Tare Dry Wt. & Tare Wyt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial I	03072910	2		TOIG #:		Depui.		(Time:		
Initial Moisture Control Initial Moisture Control Tare No. Wet Wt. & Tare Dry Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial P	030/200	N og	lested By:	SR				Checked By: NK	3y: NK	
Tare No. Tare No. Wet Wit. & Tare Water Wit. Tare Wit. Wit. Of Dry Soil Moisture Content % Dry Wit. Of Sample from Initial P		N of	Date Received:	ved: 08.08.08	08			Date Tested:	ed: 08,13,08	
Tare No. Wet Wt. & Tare Dry Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial P	0 3 6 7 8 6 9	N GA	Sieve Analysis	nalysis			Нудгоп	Hydrometer Sieve Analysis	Analysis	
Tare No. Wet Wt. & Tare Dry Wt. & Tare Water Wt. Tare Wt. Wit. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial P	030/080	ON ON			% Finer					
Tare No. Wet Wt. & Tare Dry Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial I	1 6 2 K 6 E 0	No Mo			Than			Total Wtt.		% Finer
Tare No. Wet Wt. & Tare Dry Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial P			Weight		Orig.		Weight	Finer	% Finer	Than Orig
Wet Wt. & Tare Dry Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial I	839.9 776.2 63.7 196.9 579.3 11.0 Moisture	38.1		nagp.	odilip.	10	Dauman	1 nan 50.0	100 0	Samp.
Dry Wt. & Tare Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial I	776.2 63.7 196.9 579.3 11.0 Moisture	25.4				20	3.0			
Water Wt. Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial P	63.7 196.9 579.3 11.0 Moisture	19.0				40				67.9
Tare Wt. Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial P	196.9 579.3 11.0 Moisture	12.5				60				
Wt. Of Dry Soil Moisture Content % Dry Wt. Of Sample from Initial r (100xWet Soil Wt.)/(100 + Initial	579.3 11.0 Moisture	9.5				100	4,5		67.0	53.3
Moisture Content % Dry Wt. Of Sample from Initial It (100xWet Soil Wt.)/(100 + Initial	11.0 Moisture	4.75				200			54.6	43.5
Dry Wt. Of Sample from Initial P	Moisture	10	SEE WASHED	SHED SIEVE	VE	Pan	27.3			
:(100xWet Soil Wt.)/(100 + Initial	2					Total	50.0			
- (IOOXAVEL SOII VAT.)/(IOO + IIIIII)	A					Unwashed Wt.	Wt.=			
	,	Total				Tare		Wt. Passin	Passing #200 =	
		2017	Tomas		Corr.		ECOT/2-AT			
% - #10	Ē		(00)	¥	3 3 3 3 3 3 3 3 3 3	Zr (cm)	(min)	(mm) 0	(%) N	N*(%-#10)
50.0 0.796	0.5	30.0	21.0	0.01348	23.5					37.4
50.0 0.796	7	27.5	21.0	0.01348	21.0	12.8				
	2	26.0	21.0	0.01348					39.0	31.0
50.0 0.796	4	24.0	21.0	0.01348	17.5					
50.0 0.796	8	22.0	21.0	0.01348	15.5	13.7	1.310		31.0	24.7
50.0 0.796	15	20.0	21.0	0.01348						
50.0 0.796	30	19.5	21.0	0.01348	13.0	14.2				
50.0 0.796	60	17.0	21.0	0.01348	10.5	14.6	0.493	1		***
50.0 0.796	120	16.0	21.0	0.01348		14.7				
50.0 0.796	240	15.0	21.0	0.01348	8.5	14.9	0.249			13.5
50.0 0.796	480	13.5	21.0	0.01348	2.0	15.1		0.002		
	1440	12.0	21.0	0.01348					11.0	8.8
Hydrometer #: 794968)	Graduate #.	3		Dispersing	Agent:	Sodium Hex		Amount: 12	125ml
Density of Solids:										
Description of Sample:										

Georgin Engineering Ltd. 1301 Kelliher Road Prince George, E Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-/90-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

CONTRACTOR

PROCTOR NO. 10

DATE TESTED 2008. Aug. 14 DATE RECEIVED 2008. Aug. 08 DATE SAMPLED 2008. Aug. 05

INSITU MOISTURE N/A %

Client SAMPLED BY

SR

TESTED BY

SUPPLIER

SOURCE

C-S6-ZS-05/08

MATERIAL IDENTIFICATION

MAJOR COMPONENT GLACIAL TILL

DESCRIPTION **ROCK TYPE**

BROWN

37.5MM

COMPACTION STANDARD

COMPACTION PROCEDURE

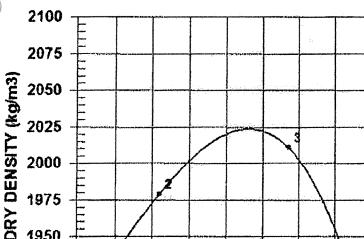
A: 101.6mm Mold, Passing 4.75mm

ASTM D698

Standard Proctor,

Automatic

RAMMER TYPE **PREPARATION**


Moist OVERSIZE CORRECTION METHOD ASTM 471.8

RETAINED 4.75mm SCREEN

15.0%

OVERSIZE SPECIFIC GRAVITY TOTAL NUMBER OF TRIALS

2.65 4

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	2015	1914	5.3
2.	2122	1.979	7.2
3	2226	2011	10.7
4	2161	1921	12.5

	E					1		
2000		<u> </u>		/			/	
	E		2					
1975		ļ					1	
	E						\	
1950		/						1
1925	F/							\
1825			1111	1111	1111			•
	Held-I				1-1-1-1-	سلسلس	1111	
	5	3 7	7 5	t (1	0 1	1 1	2

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	2020	9.5
OVERSIZE CORRECTED	2100	8.0

COMMENTS

SPECIFIC GRAVITY (COARSE) - 2.646

SPECIFIC GRAVITY (FINES) - 2.678

Page 1 of 1

2008.Aug.15

MOISTURE CONTENT (%)

GeoNorth Engineering Ltd.

1301 Kelliher Road Prince George, BC558 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Pollcy Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Mount Polley Minc

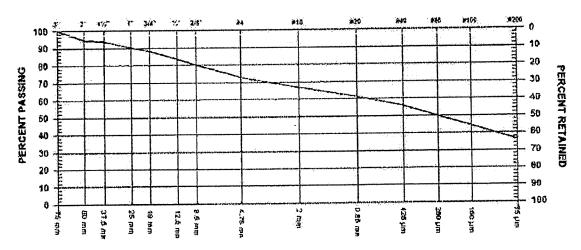
Likely

CONTRACTOR

Stage 6

DATE RECEIVED 2008. Aug. 18 DATE TESTED 2008. Aug. 20 DATE SAMPLED 2008. Aug. 13 SIEVE TEST NO. 12

SUPPLIER SOURCE


C-S6-ZS-06/08

Client SAMPLED BY DJ **TESTED BY**

SPECIFICATION

MATERIAL TYPE Brown Glacial Till (dense)

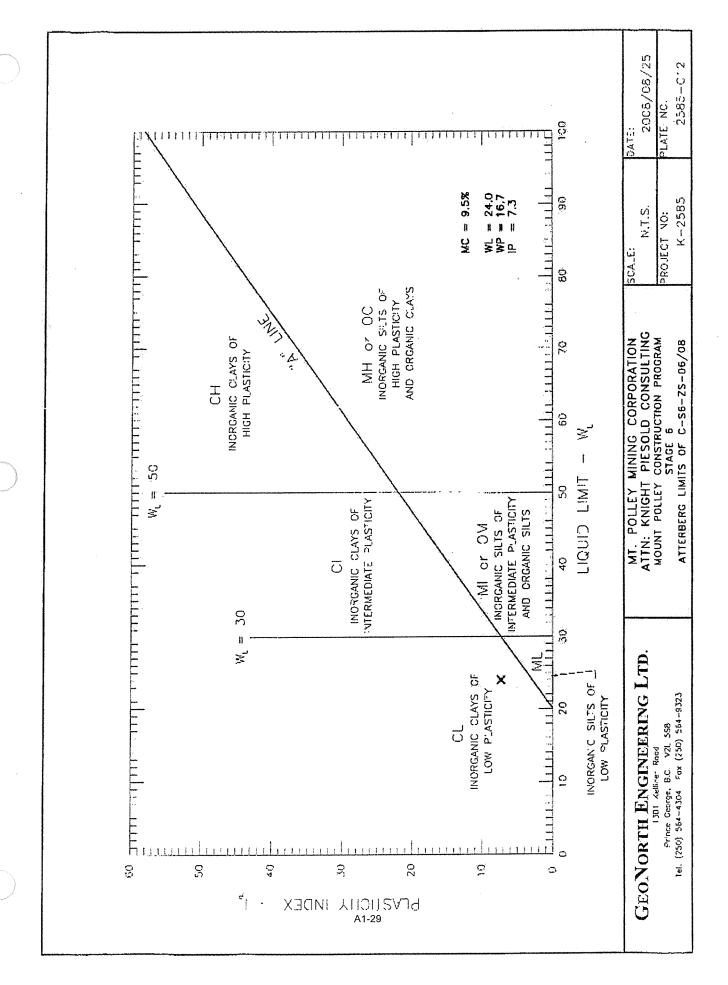
TEST METHOD WASHED

GRAVI	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3"	75 mm	100.0	
2"	50 mm	94.6	
1 1/2"	37.5 mm	93.8	
1"	25 mm	90.4	
3/4"	19 mm	88.1	
1/2"	12.5 mm	83.3	
3/8"	9.5 mm	80.1	

SAND SI	ES AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4 No. 10 No. 20 No. 40 No. 60 No. 10 No. 20		73.0 66.8 61.2 55.9 50.0 44.2 36.1	

9.5% MOISTURE CONTENT

Location: PE Borrow Pit, Chainage: Near KP07-01


Elevation: 1.5m Below Surface

Page 1 of 1

2008.Aug.25 GeoNorth Engineering Ltd.

Sample S	Drainet Mar	. (X		
Tests #: Hole #: Depth: Checked By: NK Checked	ログラングラー	ne: MPCP	- Stage 6							Project #:	K-2585	
Tested #V Test	Source/Loc	ation: C-S	80/90-SZ-9	Andrews of the second s						Type: Bro	wn Glacial	
Sieve No. Tested Dy. DJ. Cont. Tested Dy. DJ. Cont. Tested Dy. DJ. Cont. Cont.	Sample #:			Test#:		Hole #:		Depth:		Time:		***************************************
Ordering Modelure (included) Sieve Analysis % Finer Than Neglight (included) Finer Free (included) Finer Than Order (included) Weight (included) Frank (included) Merchange (included) Merchange (included) Finer (included) Merchange (included) <t< th=""><th>Sampled By</th><th>Client</th><th></th><th></th><th>Tested By:</th><th>വ</th><th></th><th></th><th></th><th>Checked B</th><th>Ϋ́. NK</th><th></th></t<>	Sampled By	Client			Tested By:	വ				Checked B	Ϋ́. NK	
Sieve Analysis Tran Tran Weight Total Wt. Tran Weight Total Wt. Tran Tran Tran Weight Tran Tr	Date Sampl	ed: 08.13.0	82		Date Recei		08			Date Teste	id: 08.21.08	
Sieve No. Retained Passing Sainp. Sieve No. Retained Than Or Than Or Than Or Sieve No. Retained Than Or Than Or Samp. Sieve No. Retained Than Or Samp. Sieve No.	Initial	Moisture	Content		Sieve A	nalysis			Hydrom	eter Sieve	Analysis	
Sieve No. Retained Passing Samp Samp Samp Sieve No. Retained Than Than Than Than Than Than Than Than							% Finer Than			Total Wt.		% Finer
Sieve No. Retained Passing Samp. Sieve No. Retained Than Than Samp. Samp. Sieve No. 100.0 100.					Weight	Total Wit.	Orig.		Weight	Finer	% Finer	Than Orig
25.4 10.0 100.0				Sieve No.	Retained	Passing	Ѕатр.	Z	Retained		Than	-A
7 25.4	Tare No.			38.1				10				
19.0 4.4 51.7 86.2 1.5 1.5 1.0 1	∞	are	1174.7	25.4				20				
12.5 46.4 77.3 48.4 77.3 48.4 77.3 48.4 77.3 48.5 48.4 77.3 48.5 49.5	ĺ∞	are	1088.3					40				
SEE WASHED SIEVE Pan 34.5 57.5	5		86.4					09		46.		
10 SEE WASHED SIEVE Pan 34.5 57.5 57.5 10 SEE WASHED SIEVE Pan 34.5 57.5 10 SEE WASHED SIEVE Total 60.0 6.9 34.5 57.5 11 12 12 12 12 12 12	Tare Wil		179.6					100				
Total Cor.	101 Of Day	lick	7 808 7	L				200				38.4
Total Corr. Cor	Moietire C	Content %	5.6			ASHED SIE	VE	Pan	34.5			
Total Corr. Cor	S + O + W	ample from	Initial Moisture					Total	0.09			
et Soil Wv. l/(100 + Initial Moisture) Total Corr. SCART(Zr)r (min) N (%) N	25 35 55							Ilnwashed	3			
g Reading Corr. (a) Feading Corr. (bc68) Feading Corr. (bc68) Feading Corr. (bc68)	(100xWet So	il Wt. j/(100 +	- Initial Moisture)	E				Tare				
Corr				l Olai								
% - #10 Time (min) R (0C) K R° Zr (cm) (min) D (mm) N (%) N	Starting		Elapsed	Reading	Temp	: :	Corr. Reading		SQRT(Zr)/T			1
50.0 0.668 0.5 37.0 0.01317 31.0 11.2 4.729 0.062 51.7 50.0 0.668 1 33.5 23.0 0.01317 27.5 11.8 3.429 0.045 45.8 50.0 0.668 2 32.0 23.0 0.01317 26.0 12.0 2.450 0.045 45.8 50.0 0.668 4 30.0 23.0 0.01317 22.0 12.0 2.450 0.023 40.0 50.0 0.668 4 30.0 23.0 0.01317 22.0 12.7 1.26 0.023 40.0 50.0 0.668 15 27.0 23.0 0.01317 21.0 12.8 0.025 0.017 36.7 50.0 0.668 12 23.0 0.01317 14.5 13.6 0.062 0.009 31.7 50.0 0.668 48 25.0 23.0 0.01317 14.5 13.6 0.006 27.5 <	W. (a)	% - #10	Time (min)	<u>«</u>	(00)	×	'n	Zr (cm)			N (%)	N*(%#10)
1 33.5 23.0 0.01317 27.5 11.8 3.429 0.045 45.8 2 32.0 23.0 0.01317 26.0 12.0 2.450 0.032 43.3 8 28.0 23.0 0.01317 24.0 12.3 1.756 0.023 40.0 15 28.0 23.0 0.01317 22.0 12.7 1.258 0.017 36.7 30 25.0 23.0 0.01317 21.0 13.2 0.062 0.002 40.0 60 22.5 23.0 0.01317 19.0 13.2 0.062 0.009 31.7 120 22.5 23.0 0.01317 16.5 13.6 0.076 27.5 240 19.5 23.0 0.01317 14.5 13.9 0.340 0.004 24.2 480 17.5 22.0 0.01317 14.5 0.174 0.002 18.3 1440 15.0 22.0 0.01332 <	80 US	•	C			L	31.0	Ξ				
2 32.0 23.0 0.01317 26.0 12.0 2.450 0.032 43.3 43.0 23.0 0.01317 24.0 12.3 1.756 0.023 40.0 8 28.0 23.0 0.01317 22.0 12.7 1.258 0.017 36.7 15 27.0 23.0 0.01317 19.0 13.2 0.662 0.009 31.7 60 22.5 23.0 0.01317 14.5 13.9 0.340 0.004 24.2 240 17.5 22.0 0.01317 14.5 13.9 0.340 0.003 22.5 480 17.5 22.0 0.01332 11.0 14.1 0.242 0.003 22.5 1440 15.0 22.0 0.01332 11.0 14.5 0.104 0.002 18.3 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: 125ml	0 00	0.658						_				
4 30.0 23.0 0.01317 24.0 12.3 1.756 0.023 40.0 8 28.0 23.0 0.01317 22.0 12.7 1.258 0.017 36.7 15 27.0 23.0 0.01317 21.0 12.8 0.925 0.012 35.0 30 25.0 23.0 0.01317 16.5 13.6 0.476 0.009 31.7 60 22.5 23.0 0.01317 14.5 13.6 0.340 0.006 27.5 240 19.5 23.0 0.01317 14.5 13.9 0.340 0.004 24.2 480 17.5 22.0 0.01317 13.5 14.1 0.242 0.003 22.5 1440 15.0 22.0 0.01332 11.0 14.5 0.002 18.3 1440 15.0 22.0 0.01332 8.5 14.9 0.102 0.001 14.2 Graduate #: 2 32.0 0.01332 </td <td>0.00</td> <td>800</td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.00	800				L						
8 28.0 23.0 0.01317 22.0 12.7 1.258 0.017 36.7 36.7 35.0 25.0 23.0 0.01317 21.0 12.8 0.925 0.012 35.0 25.0 22.5 23.0 0.01317 19.0 13.2 0.662 0.009 31.7 240 19.5 23.0 0.01317 14.5 13.9 0.340 0.004 24.2 24.0 17.5 22.0 0.01317 14.5 14.1 0.242 0.003 22.5 480 17.5 22.0 0.01332 11.0 14.5 0.174 0.002 18.3 22.5 1440 15.0 22.0 0.01332 8.5 14.9 0.102 0.001 14.2 Amount: 125ml	0.00	0.000	,			1						
15 27.0 23.0 0.01317 21.0 12.8 0.925 0.012 35.0 31.7 30 25.0 23.0 0.01317 19.0 13.2 0.662 0.009 31.7 12.0 25.5 23.0 0.01317 14.5 13.9 0.340 0.004 24.2 24.0 24.0 0.01317 14.5 14.1 0.242 0.003 22.5 480 17.5 22.0 0.01332 11.0 14.5 0.174 0.002 18.3 14.40 15.0 22.0 0.01332 8.5 14.9 0.102 0.001 14.2 Graduate #: 2 Dispersing Agent: Sodium Hex	0.00	0.000										
30 25.0 23.0 0.01317 19.0 13.2 0.662 0.009 31.7 60 22.5 23.0 0.01317 16.5 13.6 0.476 0.006 27.5 24.2 24.2 24.0 0.01317 13.6 13.9 0.340 0.004 24.2 24.0 0.01317 13.6 14.1 0.242 0.003 22.5 24.0 0.01312 11.0 14.5 0.174 0.002 18.3 22.5 22.0 0.01332 11.0 14.5 0.174 0.002 18.3 22.6 22.0 0.01332 8.5 14.9 0.102 0.001 14.2 22.0 0.01332 8.5 14.9 0.102 0.001 14.2 Amount: 125ml	80.00	0.668										
60 22.5 23.0 0.01317 16.5 13.6 0.476 0.006 27.5 24.2 25.0 0.01317 14.5 13.9 0.340 0.004 24.2 24.0 24.0 0.01 24.0 24.0 24.0 0.01 24.0 24.0 0.01 24.0 24.0 0.01 24.0 24.0 0.01 24.0 0.01 22.5 24.0 0.01 23.0 0.01332 11.0 14.5 0.174 0.002 18.3 22.6 22.0 0.01332 11.0 14.9 0.102 0.001 14.2 22.0 0.01332 8.5 14.9 0.102 0.001 14.2 Amount: 125ml	60.0	0.668				١.						
120 20.5 23.0 0.01317 14.5 13.9 0.340 0.004 24.2 240 19.5 23.0 0.01317 13.6 14.1 0.242 0.003 22.5 480 17.5 22.0 0.01332 11.0 14.5 0.174 0.002 18.3 1440 15.0 22.0 0.01332 8.5 14.9 0.102 0.001 14.2 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: 125ml	0.09	0.668										
240 19.5 23.0 0.01317 13.5 14.1 0.242 0.003 22.5 2480 17.5 22.0 0.01332 11.0 14.5 0.174 0.002 18.3 1440 15.0 22.0 0.01332 8.5 14.9 0.102 0.001 14.2 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: 125ml	0.00	0.000										
480 17.5 22.0 0.01332 11.0 14.5 0.174 0.002 18.3 1440 15.0 22.0 0.01332 8.5 14.9 0.102 0.001 14.2 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: 125ml	0.00											
1440 15.0 22.0 0.01332 8.5 14.9 0.102 0.001 14.2 Amount 125ml	0.00										,	-
Graduate #. 2 Dispersing Agent. Sodium Hex Amount: 125ml	60.0										14	9.5
	Hydromete			Graduate	2		Dispersing	Agent:	dium Hex			25ml
	Density of	Solids:										

1301 Kelliher Road Prince George, BC _L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Pollcy Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOI. -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Mount Polley Mine Likely

Stage 6

CONTRACTOR

DATE TESTED 2008. Aug. 21 DATE RECEIVED 2008. Aug. 18 DATE SAMPLED 2008. Aug. 13 PROCTOR NO. 12

INSITU MOISTURE N/A %

Client SAMPLED BY DJ

TESTED BY

SUPPLIER

C-\$6-%\$-06/08 SOURCE

MATERIAL IDENTIFICATION TILL MAJOR COMPONENT 50MM SIZE **BROWN**

DESCRIPTION **ROCK TYPE**

COMPACTION STANDARD

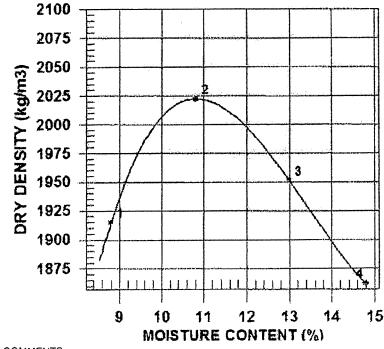
Standard Proctor,

ASTM D698

COMPACTION PROCEDURE

A: 101.6mm Mold, Passing 4.75mm

RAMMER TYPE


PREPARATION

Moist OVERSIZE CORRECTION METHOD ASTM 4718

Automatic

RETAINED 4.75mm SCREEN OVERSIZE SPECIFIC GRAVITY 27.0% 2.65

TOTAL NUMBER OF TRIALS

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	2084	1915	8.8
2	2240	2022	1.0.8
3	2205	1951	13.0
4	2138	1862	14.8
		:	

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	2020	11.0
OVERSIZE CORRECTED	2160	8.5

COMMENTS

SPHCIFIC GRAVITY (COARSE) - 2.651

SPECIFIC GRAVETY (FINES) -2.675

2008. Aug. 25 Page 1 of 1 GeoNorth Engigesping Ltd.

1301 Kelliher Road Prince George, BC \ .5S8 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

C.C. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

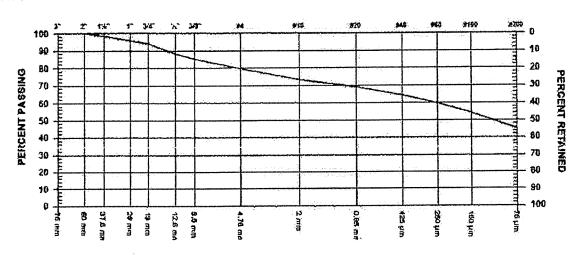
Likely Stage 6

CONTRACTOR

DATE RECEIVED 2008. Sep. 05 DATE TESTED 2008. Sep. 10 DATE SAMPLED 2008. Aug. 26 SIEVETEST NO. 14

SUPPLIER SOURCE

PE BORROW PIT C-S6-ZS-07/08


Client SAMPLED BY SR **TESTED BY**

Mount Polley Mine

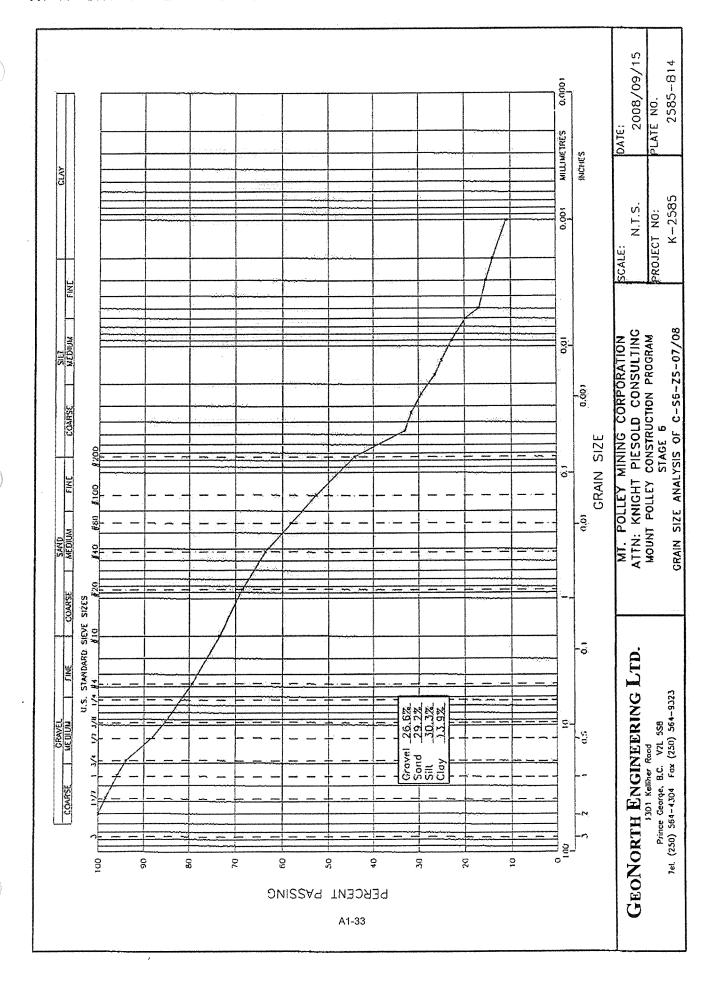
SPECIFICATION

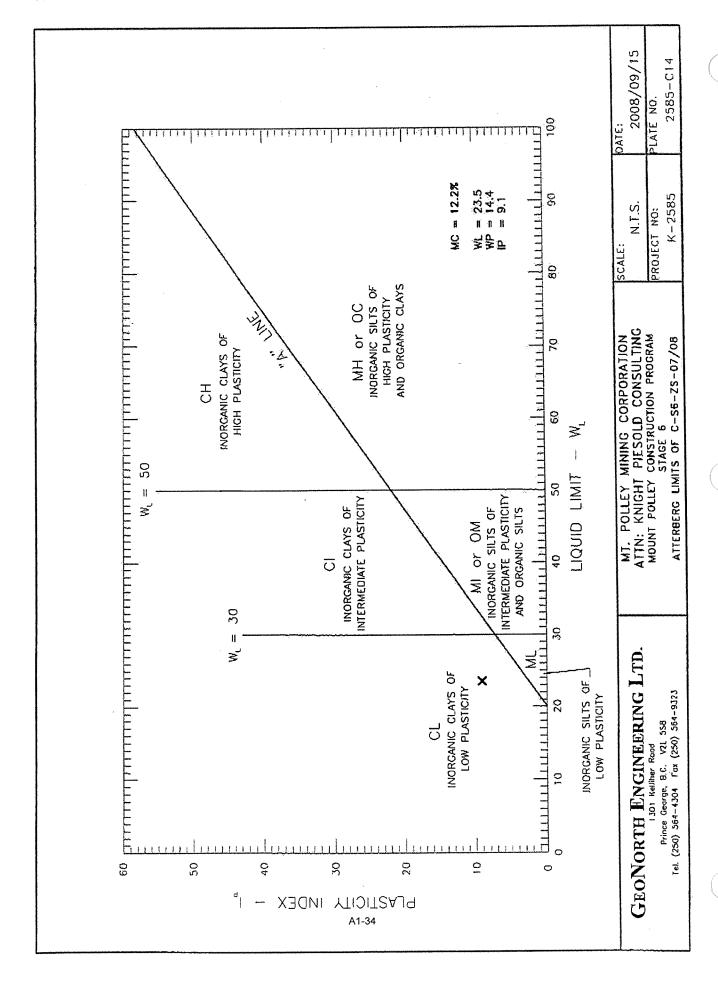
MATERIAL TYPE TILL

TEST METHOD WASHED

GRAV	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 98.4 95.9 94.0 88.1 85.3	

SAND S	IZES AND FINES		RCENT SSING	GRADATION LIMITS
No. 4 No. 10 No. 20 No. 40 No. 60 No. 10	850 1 425 1 250 1 0 150 1	nm 7 2m 6 2m 6 2m 5 2m 5	9.4 3.8 8.5 9.6 4.2 5.0	


MOISTURE CONTENT 12.2%


COMMENTS

2008.Sep.13 GeoNorth Engineering Ltd. PER.

Page 1 of 1

Project #: K2 Fissled BY: Date Project #: K2 Fissled BY: Date Project #: K2 Content Sieve No. Retained Pessing Samp. Content Sieve No. Retained Pessing Samp. Content	Total W. Pasted By. Date	Client Mou	Col Designation Color Mining	11	Knight Die	Fica					Date: Sept 13	13, 2008	
Jorcow Pit C-S6-Z5-07/08 Injune Title Injune Picson With Carlotter Sieve Analysis Injune Picson Analysis Inj	June Received: 90.05.08 Inches By: NK Color of the state of th	Project Nam	IE: MPCP	1							Project #:	K-2585	
Ontent Fischer der Sieve Analysis Holie #: Depth: Total Wr. Tested By NK Ontent Sieve Analysis Finer Analysis Priner Analysis Priner Analysis Sieve No. Retained Passing Sieve No. Retained Passing Samp. Priner All Mosture Analysis Priner All Mosture Analysis Priner All All All All All All All All All Al	Tested By Dispersion	Source/Loc	ation: PE	Pit	.S6-ZS-07/(8					Type: TILL		
Tested By: DJ Cale Received 109.05.08 Sieve No. Retained Passing Samp. Sieve No. Retained Than Than Original Moisture 12.5 10.0 1	Sieve No. Tested By. DJ.	Sample #:			Test#		Hole#:		Depth:		Time:		
Dale Received, 09.05.08 Hydrometer Sieve Analysis Sieve No. Retained Pessing Samp. Sieve No. Retained Pessing Samp. Cotal Wt.	Ontent Sieve Analysis K Finer Hydrometer Sieve Analysis Ontent Sieve Analysis K Finer Total Wt. Tran Total Wt. Total Wt. Tran Total Wt. Tran Total Wt. Weight Total Wt. Total Wt. Weight Total Wt. Weight Total Wt. Total	Sampled By:	Client			Tested By:	വ				Checked B		
Sieve Analysis Hydrometer Sieve Analysis Than Ong Than On Sieve Analysis Than Ong Than Ong Sieve No. Retained Total Wt. Than Ong Sieve No. Retained Than Ong Sieve No. Sie	Sieve Analysis Neight Total Wt Orig. Total Wt Orig. Total Wt Orig. Sieve No. Retained Passing Samp. Sieve No. Retained Total Wt Orig. Samp. Total Wt Orig. Or	Date Sample	ed: 08.26.0	38		Date Recei	ved: 09.05.	08	224 1112		Date Teste	d: 09.10.08	
Sieve No. Retained Passing Weight Fine Than On Samp. Sieve No. Retained Samp. Sieve No. Retained Than On Samp. Sieve No. Retained Than On Samp. Than On	Sieve No. Steve No. Stev	Initial	Moisture	Content		Sieve A	nalysis			Hydrom	eter Sieve	Analysis	
Sieve No. Steve No. Stev	Sieve No. Steve No. Stev							% Finer Than			Total Wt.		% Finer
Sieve No. Sieve No. Retained Passing Samp. Sieve No. Samp.	Sieve No. Retained Passing Samp. Sieve No. Retained Than					Weight	Total Wt.	Orig.		Weight	Finer		Than Orig
Set Taire 100.0 3.8.1 100.0 3.3 46.7 93.4 6.0 3.3 46.7 93.4 6.0 3.3 46.7 93.4 6.0 3.3 46.7 93.4 6.0 3.3 46.7 93.4 6.0 3.3 46.7 93.4 6.0 93.4 6.0 3.3 46.7 93.4 6.0 93.4 93.4	Solution of Sample from Initial Moisture 12.6				Sieve No.	Retained	Pasising	Samp.	Sieve No.	Retained		Than	
State Stat	State Stat	Tare No.			38.1				10	1	50.0	100.0	`
National Parameters 19.0	National State Nat	≪	are		25.4		***************************************		20				68.6
V1. Fig. 1. F	Vi. T. Soil Va. J.	1/2	1re		19.0				40				63.7
Column C	Column C				12.5				09				58.1
Control Cont	Composition	Tare Mil			9 8				160				52.7
Total SEE WASHED SIEVE For F	Soli Mt. Mt.	TAH OF DAY	li Ç		4 75	***************************************			200			.09	44.2
Solitor Control Cont	Scaling March Ma	Moietario C	Software 02	12.2		W FFR W	ASHED SI	EVE	Pan	30,1			
Barrow Correction Correct	Soil Wt.)/(100 + Initial Moisture) Total Corr. Corr. Tare Mt. Passing #200 =	Do Mi Of Sa	mule from	Initial Moisture					Total	50.0			
## Soil Wt.)// 100 + Initial Moisture) Total Corr. Flapsed Reading Temp Reading Corr.	Paragraphic								Inwashed				
Corr. Corr	Corr. Corr	(100xWet Soi	Wt.)/(100 +	+ Initial Moisture)	Total				Tare		Wt. Passin		
Corr. Corr	Gort. Cort. SQRT(Zr)yT SQRT(Zr)yT N (%) 0.0 0.734 Time (min) R (0c) 0.01332 22.5 12.1 (min) D (mm) N (%) 0.0 0.734 0.6 32.0 0.01332 22.5 12.1 2.525 0.047 45.0 0.0 0.734 1 28.0 22.0 0.01332 22.5 12.7 2.525 0.034 43.0 0.0 0.734 2 22.0 0.01332 22.5 12.7 2.525 0.034 43.0 0.0 0.734 2 22.0 0.01332 21.5 12.7 2.525 0.034 43.0 0.0 0.734 4 26.5 22.0 0.01332 18.0 1.802 0.024 40.0 0.0 0.734 15 22.0 0.01332 17.0 13.5 0.047 0.017 36.0 0.0 0.734 40 1 22.0 0.01332 15.1 <th></th> <th></th> <th></th> <th>0.0</th> <th></th> <th></th> <th></th> <th>)</th> <th></th> <th></th> <th></th> <th></th>				0.0)				
9#10 Time (min) R R 2r (cm) (min) D (mm) N (%#1) 0.0 - 32 0	96 - #10 Time (min) R (0c) K R' Sr (cm) (min) D (mm) N (%) 0.0 7.34 0.5 32.0 22.0 0.01332 22.5 12.1 4.917 0.065 51.0 0.0 0.734 0.5 32.0 22.0 0.01332 22.5 12.6 3.547 0.047 45.0 0.0 0.734 2 28.0 22.0 0.01332 21.5 12.7 2.525 0.034 40.0 0.0 0.734 4 26.5 22.0 0.01332 20.0 13.0 1.802 0.034 40.0 0.0 0.734 8 24.5 22.0 0.01332 17.0 13.5 0.948 0.017 36.0 0.0 0.734 15 22.0 0.01332 17.0 13.5 0.948 0.013 34.0 0.0 0.734 12.0 18.0 22.0 0.01332 14.1 0.434 0.005 27.0			T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dogding	T 0 2 2		Corr. Reading		SQRT(Zr)/T			
0.0 0.734 0.6 32.0 0.01332 25.5 12.1 4.917 0.065 51.0 0.0 0.734 0.6 32.0 22.0 0.01332 22.5 12.6 3.547 0.047 45.0 0.0 0.734 2 28.0 22.0 0.01332 21.5 12.7 2.525 0.034 43.0 0.0 0.734 4 26.5 22.0 0.01332 21.5 12.7 2.525 0.034 40.0 0.0 0.734 4 26.5 22.0 0.01332 18.0 13.3 1.291 0.017 36.0 0.0 0.734 15 22.0 0.01332 17.0 13.5 0.048 0.013 34.0 0.0 0.734 120 18.0 22.0 0.01332 16.5 14.1 0.484 0.005 23.0 0.0 0.734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.005	0.0 0.034 0.01332 25.5 12.1 4.917 0.065 51 0.0 0.0734 0.0 0.01332 22.5 12.6 3.547 0.047 45.5 0.0 0.0734 2 0.01332 22.5 12.6 0.034 43. 0.0 0.734 4 26.5 22.0 0.01332 21.5 12.7 2.525 0.034 43. 0.0 0.734 4 26.5 22.0 0.01332 13.0 1.802 0.024 40. 0.0 0.734 4 26.5 22.0 0.01332 17.0 13.5 0.948 0.013 34. 0.0 0.0 22.0 22.0 0.01332 14.1 0.484 0.006 27. 0.0 0.734 480 16.0 22.0 0.01332 14.1 0.484 0.006 27. 0.0 0.734 480 16.0 22.0 0.01332 14.6 0.246 0.0	2 (a) (b)	% - #4U	Time (min)	2	(00)	×	<u>.</u>	Zr (cm)	(min)		(%) N	N*(%#10)
7.734 1 29.0 22.0 0.01332 22.5 12.6 3.547 0.047 45.0 7.734 2 28.0 22.0 0.01332 21.5 12.7 2.525 0.024 40.0 7.734 4 26.5 22.0 0.01332 20.0 13.0 1.802 0.024 40.0 7.734 15 22.0 0.01332 17.0 13.5 0.948 0.013 34.0 7.734 30 22.0 22.0 0.01332 17.0 13.5 0.948 0.013 34.0 7.734 60 22.0 0.01332 13.5 14.1 0.484 0.006 27.0 7.734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.006 27.0 7.734 480 16.0 22.0 0.01332 10.5 14.6 0.246 0.003 12.0 7.734 480 16.0 22.0 0.01332 7.5	7.734 1 29.0 22.0 0.01332 22.5 12.6 3.547 0.047 45.5 7.734 2 28.0 22.0 0.01332 21.5 12.7 2.525 0.034 43. 7.734 8 24.5 22.0 0.01332 17.0 13.3 1.291 0.017 36. 7.734 15 23.5 22.0 0.01332 17.0 13.5 0.948 0.013 34.4 7.734 15 22.0 0.01332 17.0 13.5 0.677 0.009 31 7.734 60 20.0 22.0 0.01332 13.5 14.1 0.484 0.009 31 7.734 480 16.0 22.0 0.01332 11.5 14.4 0.246 0.006 23 7.734 480 16.0 22.0 0.01332 1.5 14.6 0.246 0.003 19 7.734 1440 14.0 22.0 0.01332 <th< th=""><th>50.0</th><th></th><th></th><th></th><th>22</th><th>0.01332</th><th></th><th></th><th>4.917</th><th></th><th></th><th></th></th<>	50.0				22	0.01332			4.917			
1,734 2 28.0 22.0 0.01332 21.5 12.7 2.525 0.034 43.0 1,734 4 26.5 22.0 0.01332 20.0 13.0 1.802 0.024 40.0 1,734 15 24.5 22.0 0.01332 17.0 13.3 1.291 0.017 36.0 1,734 15 23.5 22.0 0.01332 17.0 13.5 0.948 0.013 34.0 1,734 16 20.0 22.0 0.01332 15.5 14.1 0.484 0.009 31.0 1,734 120 120 22.0 0.01332 11.5 14.1 0.484 0.006 27.0 1,734 120 17.0 22.0 0.01332 11.5 14.4 0.346 0.005 23.0 1,734 480 16.0 22.0 0.01332 10.5 14.6 0.175 0.003 19.0 1,734 1440 14.0 22.0	1,734 2 28.0 22.0 0.01332 21.5 12.7 2.525 0.034 43.0 1,734 4 26.5 22.0 0.01332 20.0 13.0 1.802 0.024 40. 1,734 8 24.5 22.0 0.01332 17.0 13.5 0.948 0.017 36. 1,734 15 22.0 22.0 0.01332 17.0 13.5 0.948 0.013 34. 1,734 60 20.0 22.0 0.01332 15.5 14.1 0.484 0.009 27. 1,734 60 20.0 22.0 0.01332 11.5 14.1 0.484 0.006 27. 1,734 480 16.0 22.0 0.01332 11.5 14.6 0.246 0.003 21. 1,734 480 16.0 22.0 0.01332 7.5 14.7 0.175 0.001 19. 1,734 1440 14.0 22.0 <td< td=""><td>300</td><td>0.734</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	300	0.734				1						
1,734 4 26.5 22.0 0.01332 20.0 13.0 1802 0.024 40.0 1,734 8 24.5 22.0 0.01332 18.0 13.3 1.291 0.017 36.0 1,734 15 22.0 0.01332 17.0 13.5 0.948 0.013 34.0 1,734 30 22.0 22.0 0.01332 15.5 14.1 0.484 0.008 31.0 1,734 60 20.0 22.0 0.01332 13.5 14.1 0.484 0.006 27.0 1,734 120 18.0 22.0 0.01332 10.5 14.4 0.346 0.005 23.0 1,734 480 16.0 22.0 0.01332 10.5 14.6 0.246 0.003 21.0 1,734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15.0 1,734 1440 14.0 22.0 0.01332	1,734 4 26.5 22.0 0.01332 20.0 13.0 1.802 0.024 40 1,734 8 24.5 22.0 0.01332 18.0 13.3 1.291 0.017 36 1,734 15 22.0 0.01332 17.0 13.5 0.948 0.013 34 1,734 60 20.0 22.0 0.01332 15.5 13.7 0.677 0.009 31 1,734 60 20.0 22.0 0.01332 13.5 14.1 0.484 0.006 27 1,734 480 16.0 22.0 0.01332 11.5 14.4 0.346 0.005 23 1,734 480 16.0 22.0 0.01332 7.5 14.7 0.175 0.003 19 1,734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 19 1,734 14.20 14.0 22.0 0.01332 7	0.05	0 734				1						
1,734 8 24.5 22.0 0.01332 18.0 13.3 1.291 0.017 36.0 1,734 15 23.5 22.0 0.01332 17.0 13.5 0.948 0.013 34.0 1,734 30 22.0 22.0 0.01332 15.5 14.1 0.484 0.006 27.0 1,734 120 18.0 22.0 0.01332 13.5 14.1 0.484 0.006 27.0 1,734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.005 23.0 1,734 480 16.0 22.0 0.01332 16.5 14.6 0.246 0.003 21.0 1,734 1440 14.0 22.0 0.01332 7.5 14.7 0.105 0.002 19.0 1,734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15.0 1,735 22.0 0.01332 7.5 </td <td>1,734 8 24.5 22.0 0.01332 18.0 13.3 1.291 0.017 36 1,734 15 22.0 0.01332 17.0 13.5 0.948 0.013 34 1,734 60 22.0 22.0 0.01332 15.5 14.1 0.484 0.006 27 1,734 120 22.0 0.01332 13.5 14.1 0.484 0.006 27 1,734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.006 27 1,734 480 16.0 22.0 0.01332 10.5 14.6 0.246 0.003 21 1,734 1440 14.0 22.0 0.01332 7.5 14.7 0.175 0.002 19 1,734 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15 1,968 14.40 14.0 0.0175 0.001 0.001 15 <th< td=""><td>20:02</td><td>0.734</td><td></td><td></td><td></td><td>l.</td><td></td><td></td><td>ž.,</td><td></td><td></td><td></td></th<></td>	1,734 8 24.5 22.0 0.01332 18.0 13.3 1.291 0.017 36 1,734 15 22.0 0.01332 17.0 13.5 0.948 0.013 34 1,734 60 22.0 22.0 0.01332 15.5 14.1 0.484 0.006 27 1,734 120 22.0 0.01332 13.5 14.1 0.484 0.006 27 1,734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.006 27 1,734 480 16.0 22.0 0.01332 10.5 14.6 0.246 0.003 21 1,734 1440 14.0 22.0 0.01332 7.5 14.7 0.175 0.002 19 1,734 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15 1,968 14.40 14.0 0.0175 0.001 0.001 15 <th< td=""><td>20:02</td><td>0.734</td><td></td><td></td><td></td><td>l.</td><td></td><td></td><td>ž.,</td><td></td><td></td><td></td></th<>	20:02	0.734				l.			ž.,			
1734 15 23.5 22.0 0.01332 17.0 13.5 0.948 0.013 34.0 1,734 30 22.0 22.0 0.01332 15.5 13.7 0.677 0.009 31.0 1,734 60 20.0 22.0 0.01332 13.5 14.1 0.484 0.006 27.0 1,734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.005 23.0 1,734 240 17.0 22.0 0.01332 10.5 14.6 0.246 0.003 21.0 1,734 1440 14.0 22.0 0.01332 9.5 14.7 0.175 0.002 19.0 1,734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15.0 1,734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15.0 14968 Graduate #: 2 14.0 <td< td=""><td>1,734 15 23.5 22.0 0.01332 17.0 13.5 0.948 0.013 34 1,734 30 22.0 22.0 0.01332 15.5 13.7 0.677 0.009 31 1,734 60 20.0 22.0 0.01332 13.5 14.1 0.484 0.006 27 1,734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.005 23 1,734 480 16.0 22.0 0.01332 10.5 14.6 0.246 0.003 21 1,734 1440 14.0 22.0 0.01332 7.5 14.7 0.175 0.002 19 1,734 14.0 22.0 0.01332 7.5 15.1 0.175 0.001 15 1,968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: Amount</td><td>50.03</td><td>0 734</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1,734 15 23.5 22.0 0.01332 17.0 13.5 0.948 0.013 34 1,734 30 22.0 22.0 0.01332 15.5 13.7 0.677 0.009 31 1,734 60 20.0 22.0 0.01332 13.5 14.1 0.484 0.006 27 1,734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.005 23 1,734 480 16.0 22.0 0.01332 10.5 14.6 0.246 0.003 21 1,734 1440 14.0 22.0 0.01332 7.5 14.7 0.175 0.002 19 1,734 14.0 22.0 0.01332 7.5 15.1 0.175 0.001 15 1,968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: Amount	50.03	0 734										
7.734 30 22.0 22.0 0.01332 15.5 13.7 0.677 0.009 31.0 9.734 60 20.0 22.0 0.01332 13.5 14.1 0.484 0.006 27.0 7.734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.005 23.0 7.734 480 16.0 22.0 0.01332 10.5 14.7 0.175 0.003 21.0 7.734 1440 14.0 22.0 0.01332 7.5 15.1 0.175 0.002 19.0 7.734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15.0 A968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: 125ml	7.734 30 22.0 22.0 0.01332 15.5 13.7 0.677 0.009 31 7.734 60 20.0 22.0 0.01332 13.5 14.1 0.484 0.006 27 7.734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.005 23 7.734 480 16.0 22.0 0.01332 10.5 14.7 0.175 0.003 21 7.734 1440 14.0 22.0 0.01332 7.5 14.7 0.175 0.002 19 7.734 14.40 14.0 22.0 0.01332 7.5 15.1 0.102 0.002 19 1958 3.5 4.6 0.004 7.5 15.1 0.102 0.001 15 1496 Craduate #: 2 Dispersing Agent: Sodium Hex Amount:	50.03	0 734										
1,734 60 20.0 22.0 0.01332 13.5 14.1 0.484 0.006 27.0 0,734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.005 23.0 2,734 480 16.0 22.0 0.01332 10.5 14.7 0.175 0.002 19.0 3,734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15.0 4968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: 125ml	7.734 60 20.0 22.0 0.01332 13.5 14.1 0.484 0.006 27.0 0.734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.005 23 0.734 240 17.0 22.0 0.01332 10.5 14.6 0.246 0.003 21 0.734 480 16.0 22.0 0.01332 9.5 14.7 0.175 0.002 19 0.734 1440 14.0 22.0 0.01332 7.5 15.1 0.402 0.001 15 14968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount:	20.05	0 734				1						
1734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.005 23.0 0.734 240 17.0 22.0 0.01332 10.5 14.6 0.246 0.003 21.0 0.734 480 16.0 22.0 0.01332 9.5 14.7 0.175 0.002 19.0 0.734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15.0 4968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: 125ml	1734 120 18.0 22.0 0.01332 11.5 14.4 0.346 0.005 23 1.734 240 17.0 22.0 0.01332 10.5 14.6 0.246 0.003 21 1.734 480 16.0 22.0 0.01332 9.5 14.7 0.175 0.002 19 1.734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15 1.4968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount:	50.05	0.734				1			0.484			
5.734 240 17.0 22.0 0.01332 10.5 14.6 0.246 0.003 21.0 0.734 480 16.0 22.0 0.01332 9.5 14.7 0.175 0.002 19.0 0.734 1440 22.0 0.01332 7.5 15.1 0.102 0.001 15.0 14968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: 125ml	1,734 240 17.0 22.0 0.01332 10.5 14.6 0.246 0.003 21 0,734 480 16.0 22.0 0.01332 9.5 14.7 0.175 0.002 19 0,734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15 14968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: Amount	50.05	0.734				1						
1,734 480 16.0 22.0 0.01332 9.5 14.7 0.175 0.002 19.0 0,734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15.0 14968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: 125ml	0.734 480 16.0 22.0 0.01332 9.5 14.7 0.175 0.002 19 0.734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 15 14968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: Amount: Amount: Amount: Sodium Hex Amount: Amou	50.05	0 734					1			İ		
7.534 1440 14.0 22.0 0.51332 7.5 15.1 0.102 0.001 15.0 14968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: 125ml nole:	1734 1440 14.0 22.0 0.01332 7.5 15.1 0.102 0.001 10.14968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: Amount: mple:	50.05	0.734									ŀ	
4968 Graduate #: 2 Dispersing Agent: Sodium Hex Amount: 125ml Amount: 12	14968 Graduate #: 2 (Dispersing Agent: Sodium Hex Amount:	50.0	0.734							0.10	۱	Ω.	
mb(e)	Density of Solids: Description of Sample:	Hvdrometer				2		Dispersing		Jium Hex		Amount: 1	lmc2
mole:	Description of Sample.	Density of S	olids:										
		Description	of Sample	à									CA.12.03

Sep. 15. 2008 E. 9:15 AMerin Geo North Ensineering 564 9323

1301 Kelliher Road Prince George, BC __5S8 Phone (250)564-4304; fax (250)564-9323

MNO.3606, P. 6/11 RELATIONSHIP REPORT

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

CONTRACTOR

PROCTOR NO. 14

DATE TESTED 2008. Sep. 11 DATE RECEIVED 2008. Sep. 05 DATE SAMPLED 2008. Aug. 26

INSITU MOISTURE N/A % Client SAMPLED BY

LT **TESTED BY**

SUPPLIER

C-S6-ZS-07/08 SOURCE

MATERIAL IDENTIFICATION MAJOR COMPONENT TILL

SIZE

DESCRIPTION **ROCK TYPE**

COMPACTION STANDARD

Standard Proctor,

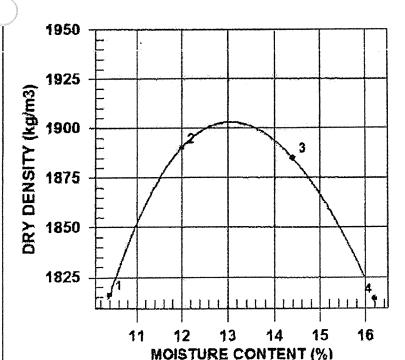
ASTM D698

COMPACTION PROCEDURE

A: 101.6mm Mold, Passing 4.75mm

Automatic

RAMMER TYPE **PREPARATION**


Moist

OVERSIZE CORRECTION METHOD ASTM 4718 RETAINED 4.75mm SCREEN

20.0%

OVERSIZE SPECIFIC GRAVITY TOTAL NUMBER OF TRIALS

2.65

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	2005	1816	10.4
2	2117	1890	12.0
3	2157	1885	14.4
4	2108	1814	16.2

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED OVERSIZE CORRECTED	1900 2010	13.0 10.5

COMMENTS SPECIFIC GRAVITY (COARSE) = 2.649

PECIFIC GRAVITY (FINES) = 2.647

Page 1 of 1 2008.Sep.13 GeoNorth Engineering Ltd.

APPENDIX A2

ZONE S RECORD

(Pages A2-1 to A2-45)

1301 Kelliher Road Prince George ; V2L5S8 Phone (250)564-4304; fax (250)584-9323

Mount Polley Mining Corp. Attn: Knight Piesold

P.O Box 12 Likely, BC VOL -1N0

ATTN: Ron MarLel @ 250-790-2268

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: cc Knight Picsold Consulling

PROJECT Mount Polley Construction Program

Stage 6

Mount Polley Mine

Likely

CONTRACTOR

SIEVE TEST NO. 6

DATE RECEIVED 2008. Jun. 23 DATE TESTED 2008. Jul. 02 DATE SAMPLED 2008. Jun. 22

SUPPLIER SOURCE

ZONE S

R-S6-ZS-01/08

Client. SAMPLED BY TESTED BY SR TEST METHOD WASHED

SPECIFICATION

MATERIAL TYPE TILL

A200 100 Ð 90 10 80 20 PERCENT PASSING 70 60 - 40 50 50 - 60 70 20 - 80 10 90 - 100

GRAVE	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 99.4 98.2 96.2 93.3 91.3	

SAI	ND SIZE	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	4 10 20 40 60 100 200	4.75 mm 2.00 mm 850 μm 425 μm 250 μm 150 μm	87.4 84.1 80.9 77.2 71.9 63.8 54.2	

9.9% MOISTURE CONTENT

COMMENTS

SOUTH EMBANKMENT 1:020 AT 951.9

Page 1 of 1

2008.Jul.08

GeoNorth Engineering Ltd.

A2-1

PER

1301 Kelliher Road Prince George, V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. ALLn:

C.C. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Picsold P.O. Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

CONTRACTOR

PROCTOR NO. 6

DATE TESTED 2008. Jul. 02 DATE RECEIVED 2008. Jun. 23 DATE SAMPLED 2008. Jun. 22

INSITU MOISTURE N/A %

SAMPLED BY

Client

TESTED BY

\$R

Zone S SUPPLIER

SOURCE

R-S6-ZS-01/08

MATERIAL IDENTIFICATION

MAJOR COMPONENT THIT

SIZE

50MM

DESCRIPTION

ROCK TYPE

COMPACTION STANDARD

Standard Proctor,

ASTM D698

COMPACTION PROCEDURE

A: 101.6mm Mold,

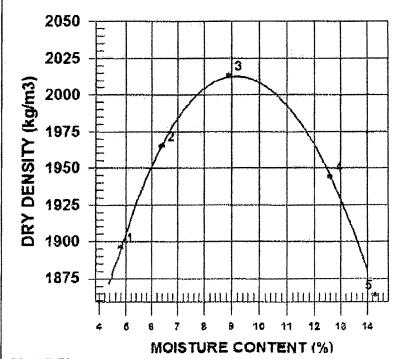
Passing 4.75mm Automatic

RAMMER TYPE **PREPARATION**

Moist

OVERSIZE CORRECTION METHOD ASTM 4718

RETAINED 4.75mm SCREEN


12.4%

OVERSIZE SPECIFIC GRAVITY

2.69

TOTAL NUMBER OF TRIALS

5

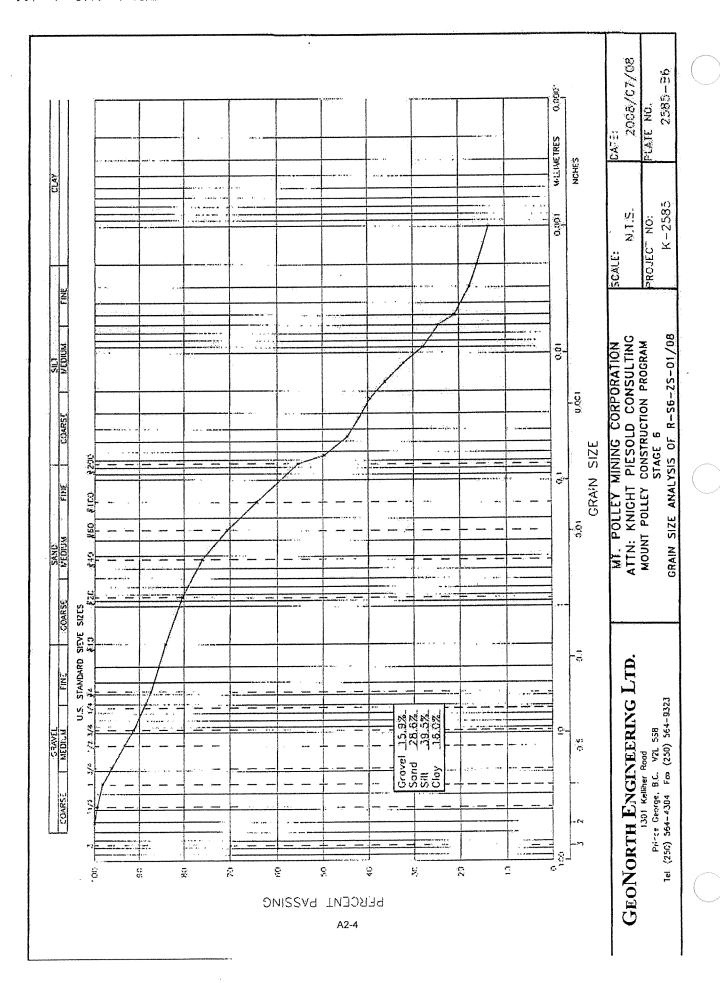
TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	1987	1896	4.8
2	2091	1965	6.4
3	2192	2013	8.9
1	2189	1944	12.6
5	2130	1864	14.3

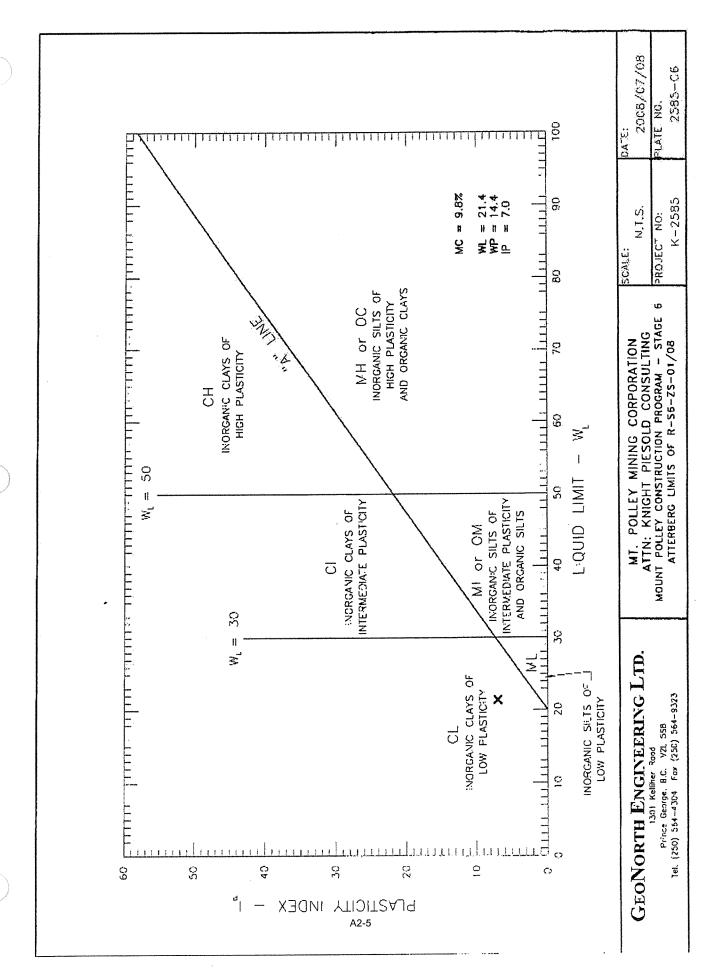
	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED OVERSIZE CORRECTED	2010 2080	9.0 8.0

COMMENTS

STICIFIC GRAVITY = 2.69 (COARSE) SOUTH EMBANKMENT 1+020 AT/

SPECIFIC GRAVITY = 2.67 (FINE)


Page 1 of 1


2008.Jul.08

GeoNorth Engineering Ltd.

PER.

Clinate Resil	1.01.00	Oliver Mannet Dollon Mining Com. Atte	10:17:17	r. Variaht Bissold					Doto: Lilia	مريده	
Project Name	o. Mount	Project Name: Mount Polley Construction	iction Pro	dram Sta	Stage 6				4	- 1	
	110001				202		-			2077	
Source/Loca	tion: con	Source/Location: Zone S - R-56-25-01			3				lype. IIII	***************************************	
Sample #:			Test#:		Hole #:		Depth:		Time:		
Sampled By: Client	Client			Tested By: DJ	DJ				Checked By:	iy: DJ	
Date Sampled: 06.22.08	d: 06.22.0	æ		Date Received:	ived: 06.23.08	.08			Date Teste	Date Tested: 07.07.08	
Initial	Initial Moisture Content	Content		Sieve A	Sieve Analysis			Hydrom	Hydrometer Sieve Analysis	Analysis	
						% Finer					
	***************************************		ariaus No.	notavens		Than			Total Wt		% Finer
			Cione No	Weight	Total Wt.	Orig.	Signo No	Weight	Finer	% Finer	Than Orig
Tare No			38.1		n assily	- Constant	10	Demon	50.0		84.1
∞ಶ	Tare		25.4				20	2.2	47.8	95.6	
অ	ē		19.0				40	2.6	45.2		76.0
ξ			12.5				09			84.0	
Tare Wt.			9.5				100			76.6	64.4
Wt. Of Dry Soil	75	de la companya de la	4.75				200			0.99	55.5
Moisture Content %	ntent %	9.8	10	SEE	WASHED SI	SIEVE	Pan	33.0		·	
Dry Wt. Of Sample from Initial Moisture	mple from I	nitial Moisture					Total	50.0			
							Unwashed Wt.	WL=			
(100xWet Soil	Wt.)/(100 +	=(100xWet Soil Wt.)/(100 + Initial Moisture) :	Total				Tare		Wt. Passir	Passing #200 =	
						Corr.					
Starting		Elapsed	Reading	Тетр		Reading		SQRT(Zr)/T			
W.t. (g)	%-#10	Time (min)	Œ	(OC)	¥	. к	Zr (cm)	(min)	٥	රි 2	N*(%#10)
50.0	000.0	0.5	36.0	22.0							
50.0	0.000	-	33.0		0.01332						
50.0	0.000	2			0.01332						
50.0	0.000	4	30.0			2 23.5		1.762			
50.0	000'0	00		22.0							
50.0	0.000	15			0.01332		13.2	0.937			32.0
50.0	0.000	30	23.0		0.01332	2 16.5	13.				
50.0	0.000	09			0.01332	2 14.5					
50.0	0.000	120								5 25.0	
50.0	0.000	240	17.0			1	14.6	0.246			
50.0	0.00	480	16.0		0.01332		ì		0.002	19.0	
20.0	0.000	1440	14.0			7 8.0			l	16.	13.5
Hydrometer #: 794968	#: 794968		Graduate	#:2		Dispersing	Agent:	Sodium Hex		Amount: 1	125ml
Density of Solids:	olids:							***************************************	`		
Description of Sample:	of Sample:										
			Treatment of the second								NORLED

1301 Kelliher Road Prince George, _C V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold

P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

Mount Polley Mine

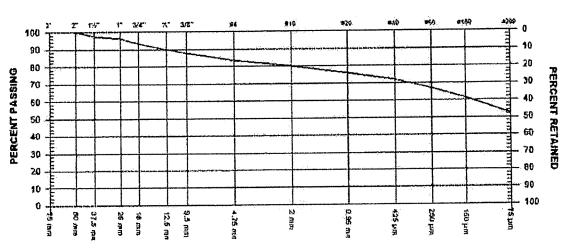
Likely

CONTRACTOR

SUPPLIER

SOURCE

TO


SIEVE TEST NO. 7

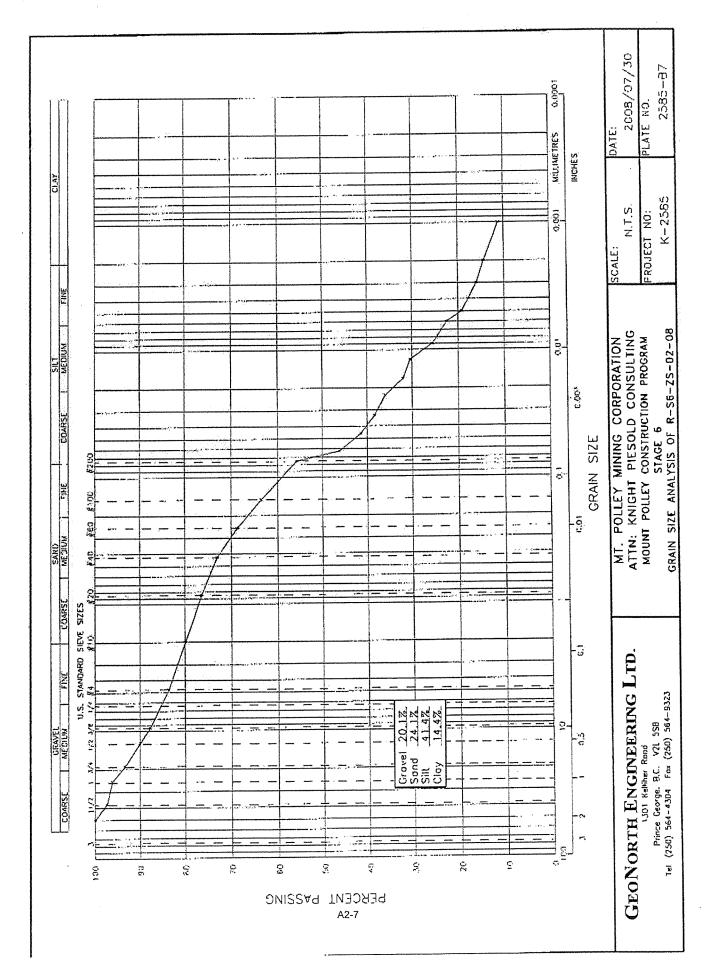
SPECIFICATION

DATE RECEIVED 2008. Jul. 21 DATE TESTED 2008. Jul. 24 DATE SAMPLED 2008. Jul. 15

Client SAMPLED BY SR R-S6-ZS-02-08 TESTED BY TEST METHOD WASHED

MATERIAL TYPE TILL

	GRAVEL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/ 1" 3/4" 1/2" 3/8"	25 19 12.5	100.0 97.4 96.2 93.4 90.0 87.8	


SAN	D SIZES	S AND FINE	ES .	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	4 10 20 40 60 100 200	1.75 2.00 850 425 250 150 75	hw ww	83.6 79.9 76.0 71.8 66.9 61.4 52.5	

9.7% MOISTURE CONTENT

COMMENTS

MAIN FMBANKMENT

2008.Jul.29 Page 1 of 1 GeoNorth Engineering Ltd.

Test Fried	Test #: Hole #: Depth: Depth:	Client: Mount Polley Mining Corp.	Sient: Mount Polley Mining Corp. / Kr	Kniaht Piesold	plos					Date: July?	29, 2008	-
Total #1 Fast #2 Hole #: Papth: Total Wight To	Test #: Hole #: Depth: Depth: Depth: Depth: Depth: Date Received: 07.21.08 Depth: Date Received: 07.21.08 Depth: Date Received: 07.21.08 Depth: Depth: Depth: Depth: Date Received: 07.21.08 Depth: oject Name: MPCP - Sta	age 6	*						Project #:	K-2585		
Teste Feet	Test #: Hole #: Depth: Depth: Depth: Depth: Depth: Date Received: 07.21.08 Depth: Date Received: 07.21.08 Depth: Date Received: 07.21.08 Depth: Date Received: 07.21.08 Depth: Dep	vurce/Location: R-S6-Z5	3-02-08	***************************************						Type: TILL		
Particular Tested By SR Sieve Analysis Client Sieve Analysis S	Sieve No. Seried By: SR	ımple #:	Γ	15		Hole #:		Depth:		Time:		
Sieve Arralysis Parie Received: 07.21.08 Pinet Weight Total Wt. Original Samp. Pinet Weight Total Wt. Original Samp. Pinet Than Original Samp. Pinet P	Sieve Analysis Sieve No. Sieve No. Retained Passing Samp. Sieve No. Retained Passing Pas	ampled By: Client			Tested By:	SR				Checked B	회	
Sieve Analysis Sieve Analysis Weight Total Wt. Weight Total Wt. Sieve No. Sieve No. Retained Than Samp. Sieve No. Retained Than Than Or Samp. Sieve No. Retained Than Than Or Samp. Than Or Samp. Sieve No. Sieve No. Sieve No. Retained Than Than Or Samp. Than	Neight Total Wt. Orig. Sieve No. Retained Passing Samp. Sieve No. Retained Passing Pan Pan	ate Sampled: 07.15.08			Date Recei	ved: 07.21.	08			Date Teste	0	
Neight Total Wt. Sieve No. Retained Than Samp. Sieve No. Retained Than Samp. Samp. Sieve No. Retained Than Than Samp. Samp. Sieve No. Retained Than Than Samp. S	Neight Total Wt. Orig. Sieve No. Retained Total Wt. Orig. Sieve No. Retained Passing Samp. Sieve No. Retained 10 10 10 10 10 10 10 1	Initial Moisture Con	tent		Sieve A	nalysis			Hydrom	eter Sieve	Analysis	
Neight Total Wt. Cotal W	Weight Total Wt. Orig. Sieve No. Retained 25.4 10 10 10 10 10 10 10 1						% Finer			3		
Neaging Neaging Sieve No. Retained Than Than Samp Sieve No. Seleve No. Seleve No. Retained Than Than Than Samp Seleve No. Selev	Neight Fotal Wt. Unig. Neight Sieve No. Retained 25.4		vausus	,,			Than			Final WT.	9	% riner Than Orio
Corr	SEE WASHED SIEVE 10 2.2				Weight	Fotal Wift.	. G. G.	Sieve No		Than		Samo.
12.5 4 2.1 45.7 91.4 40.0 2.1 45.7 91.4 40.0 2.1 45.7 91.4 40.0 4.5 91.4 40.0 4.5 91.4 40.0 4.5 91.4 40.0 4.5 91.4 40.0 4.5 91.4 40.0 4.5 91.4 40.0 4.5 91.4 40.0 4.5 91.4 40.0 91.5 40.0 4.5 91.4 40.0 4.5 91.4 40.0 4.5 91.4 40.0 4.5 91.4 40.0 4.5 91.4 40.0 91.5 91.4 40.0 91.5 91.4	15.5 25.4 20 2.2 2.1 2.5	No.		38.1	Nevamen	Si ilicopi i		10	T		100.0	
19.0 19.0 2.1 45.7 91.4 17.5 17.5 17.5 186.0 17.5 19.6	19.0	, ≪		25.4				20	2	47.8		
12.5 9.5 100 3.2 39.8 79.6 100 3.2 39.8 79.6 100 3.2 39.8 79.6 100 3.2 39.8 79.6 100 3.2 39.8 79.6 100 3.2 39.8 79.6 100 3.2 39.8 79.6 100 3.2 39.8 79.6 100 3.2 39.8 79.6 100 3.2 39.8 79.6 100 3.2 39.0 100 3.2 39.0 100 3.2 39.0 30.0 32.0	12.5 9.5 100 2.7 9.5 9.5 9.5 9.5 9.5 9.5 10 SEE WASHED SIEVE Pan 34.9 10 SEE WASHED SIEVE SEE SEE 10 SEE WASHED SIEVE Pan 34.9 10 SEE WASHED SIEVE SEE SEE 10 SEE WASHED SIEVE SEE 10 SEE WASHED SIEVE SEE 10 SEE WASHED SEE 10 SEE	ا ا		19.0				40				73.0
9.5 4.75 5.00 4.9 34.9 69.8 79.6 70.0 70	Heading Total Total 3.2 Reading Total Cort. Cort. A.75 Reading Total Total 34.9 Reading Total SCRT(Zr)rT Reading Total Cort. Reading K K 35.0 23.0 0.01317 29.0 11.5 3.465 30.0 23.0 0.01317 20.0 12.3 2.483 4 28.5 23.0 0.01317 20.0 13.0 1.275 8 26.0 23.0 0.01317 20.0 13.0 1.275 9 25.0 23.0 0.01317 14.0 13.0 0.0435 0 25.0 23.0 0.01317 14.0 14.0 0.0483 0 25.0 23.0 0.01317 10.0 14.0 0.0483 0 16.0 23.0 0.01317 10.0 14.0 0.0483 0 16.0 <t< td=""><td></td><td></td><td>12.5</td><td></td><td></td><td></td><td>60</td><td></td><td></td><td></td><td>68.7</td></t<>			12.5				60				68.7
A-75 SEE WASHED SIEVE Pan 34.9 34.9 69.8	Reading Temp K Reading Cort. SCE (cm) 4.95 1 0 SEE WASHED SIEVE Pan 34.9 Total Total 50.0 Reading Temp Cort. Cort. SCRT(Zr)rT Reading Temp Cort. SCRT(Zr)rT SCRT(Zr)rT 1 32.0 23.0 0.01317 29.0 11.5 4.788 2 35.0 23.0 0.01317 26.0 12.3 2.485 2 25.0 23.0 0.01317 22.5 12.6 1.774 2 25.0 23.0 0.01317 20.0 13.0 0.675 2 25.0 23.0 0.01317 16.0 13.7 0.675 0 22.0 23.0 0.01317 14.0 0.483 0 15.0 23.0 0.01317 10.0 14.0 0.443 0 15.0 23.0 0.01317 10.0 14.0 0.044 0 15.0 23.0 0.01317 0.0 14.0 0.044	are W		9.5				100				
Total 50.0 Total 50.0 Total 50.0 Total 50.0 Total	SEE WASHED SIEVE Pan 34.9 Total Corr. Unwashed Wt.= 50.0 Reading Temp K Reading Corr. Corr. SQRT(Zr)/T 8 35.0 23.0 0.01317 26.0 11.5 4.798 1 32.0 23.0 0.01317 24.0 12.3 2.485 2 36.0 23.0 0.01317 20.0 13.0 3.465 2 36.0 23.0 0.01317 24.0 12.3 2.483 2 26.0 23.0 0.01317 20.0 13.0 1.275 2 25.0 23.0 0.01317 10.0 13.0 0.675 0 20.0 23.0 0.01317 10.0 14.0 0.043 0 16.0 23.0 0.01317 10.0 14.0 0.044 0 15.0 23.0 0.01317 7.0 14.0 0.047 0 13.0 23.0 <td># Of De Soil</td> <td></td> <td>4.75</td> <td></td> <td></td> <td></td> <td>200</td> <td></td> <td></td> <td></td> <td></td>	# Of De Soil		4.75				200				
Total Feading Cort. Co	Reading Temp Corr. Corr. SCRT(Zr)VT Rading Temp Corr. Corr. SCRT(Zr)VT Rading Temp Corr. Corr. SCRT(Zr)VT Rading Temp Corr.	oisture Content %	7.6	101	SEE		EVE	Pan	34.9			
Total Corr. Corr	Reading Rading Substituting Substi	www. Of Samole from Initia	Moisture					Total	50.0			
Reading Temp Corr. SQRT(Zr)T N(%)	Reading Rading Temp Cort. Cort. SCRT(Zr)/IT R (0C) K R Zr (cm) (min) 32.0 23.0 0.01317 29.0 11.5 4.798 1 32.0 23.0 0.01317 26.0 12.0 3.465 2 30.0 23.0 0.01317 24.0 12.3 2.483 4 28.5 23.0 0.01317 22.5 12.6 1.774 8 26.0 23.0 0.01317 20.0 13.0 1.275 9 25.0 23.0 0.01317 14.0 14.0 0.937 0 20.0 23.0 0.01317 14.0 14.0 0.483 0 16.0 23.0 0.01317 10.0 14.6 0.176 0 15.0 23.0 0.01317 7.0 14.8 0.176 0 15.0 23.0 0.01317 7.0 14.8 0.176 0							Unwashed				
9 Flapsed Frading Cor. Reading Cor. Cor. Cor. SCRT(Zr)rT (min) N (%)	g Keading Temp Keading Temp Keading Cort. Cort. Cort. Cort. Cort. Cort. Cort. Cort. Cort. Cr(min) Cort. Cort. Cr(min)	100xWet Soil Wt.)/(100 + Initia		Total				Tare		Wt. Passir		
g Elapsed Reading Feading Feading Feading Feading Feading Feading Feading CoC) K R Zr (cm) (min) D (mm) N (%)	g Keading Reading Temp K R CCml Cml Cml 0.0 0.799 0.5 35.0 23.0 0.01317 29.0 11.5 4.798 0.0 0.799 1 32.0 23.0 0.01317 26.0 12.0 3.465 0.0 0.799 4 28.5 23.0 0.01317 22.5 12.7 3.483 0.0 0.799 4 28.5 23.0 0.01317 20.0 13.7 2.483 0.0 0.799 4 28.5 23.0 0.01317 20.0 13.7 0.937 0.0 0.799 15 25.0 23.0 0.01317 14.0 13.7 0.675 0.0 0.799 12 23.0 0.01317 14.0 14.0 0.483 0.0 0.799 12 18.0 23.0 0.01317 14.0 14.0 0.483 0.0 0.799 480 16.0 <						Corr.		2.14(2.4			
% - #10 Time (min) R (OC) K R° Zr (cm) (min) D (mm) N (%) N	% - #10 Time (min) R (0C) K R' Zr (cm) (min) 0.0 0.799 0.5 35.0 23.0 0.01317 29.0 11.5 4.798 0.0 0.799 0.5 30.0 23.0 0.01317 26.0 12.0 3.465 0.0 0.799 1 32.0 23.0 0.01317 24.0 12.3 2.483 0.0 0.799 4 28.5 23.0 0.01317 22.5 12.6 1.774 0.0 0.799 4 28.5 23.0 0.01317 20.0 13.0 1.275 0.0 0.799 15 25.0 23.0 0.01317 14.0 13.7 0.675 0.0 0.799 120 23.0 0.01317 14.0 14.0 0.483 0.0 0.799 480 15.0 23.0 0.01317 10.0 14.8 0.176 0.0 0.799 1440 15.0 23.0			Reading	Тетр		Reading	ن استان	SQRT(Zr)/T		1	
0.0 0.799 0.5 35.0 23.0 0.01317 29.0 11.5 4.798 0.063 58.0 0.0 0.799 1 32.0 23.0 0.01317 28.0 12.0 3.465 0.046 52.0 0.0 0.799 2 30.0 23.0 0.01317 24.0 12.3 2.483 0.045 45.0 0.0 0.799 4 28.5 23.0 0.01317 22.5 12.6 1.774 0.023 45.0 0.0 0.799 8 26.0 23.0 0.01317 20.0 13.0 0.017 40.0 0.0 0.799 15 25.0 23.0 0.01317 14.0 0.483 0.005 28.0 0.0 0.799 120 23.0 0.01317 14.0 0.483 0.005 28.0 0.0 0.799 240 16.0 23.0 0.01317 10.0 14.8 0.075 0.005 28.0 0	0.0 0.799 0.5 35.0 23.0 0.01317 29.0 11.5 0.0 0.799 1 32.0 23.0 0.01317 26.0 12.0 0.0 0.799 2 30.0 23.0 0.01317 24.0 12.3 0.0 0.799 4 28.5 23.0 0.01317 22.5 12.6 0.0 0.799 4 26.0 23.0 0.01317 20.0 13.0 0.0 0.799 15 25.0 23.0 0.01317 16.0 13.7 0.0 0.799 60 20.0 23.0 0.01317 14.0 14.0 0.0 0.799 60 20.0 23.0 0.01317 14.0 14.0 0.0 0.799 480 16.0 23.0 0.01317 10.0 14.8 0.0 0.799 480 16.0 23.0 0.01317 7.0 14.8 0.0 0.799 1440 <td< th=""><th>% - #10</th><th></th><th>œ</th><th>(00)</th><th>¥</th><th>K.</th><th>Zr (cm)</th><th>(min)</th><th>(mm) O</th><th>N (%)</th><th>1 件 火 N</th></td<>	% - #10		œ	(00)	¥	K.	Zr (cm)	(min)	(mm) O	N (%)	1 件 火 N
1 32.0 23.0 0.01317 26.0 12.0 3.465 0.046 52.0 2 30.0 23.0 0.01317 24.0 12.3 2.483 0.033 48.0 4 28.5 23.0 0.01317 22.5 12.6 1.774 0.023 45.0 15 26.0 23.0 0.01317 20.0 13.0 1.275 0.017 40.0 30 22.0 23.0 0.01317 16.0 13.7 0.675 0.009 32.0 60 20.0 23.0 0.01317 14.0 0.483 0.005 28.0 120 18.0 14.0 0.483 0.005 28.0 120 18.0 14.3 0.247 0.005 28.0 120 23.0 0.01317 10.0 14.8 0.176 0.005 28.0 480 16.0 23.0 0.01317 7.0 15.1 0.103 0.001 18.0 1440<	1 32.0 23.0 0.01317 26.0 12.0 23.0 0.01317 24.0 12.3 28.5 23.0 0.01317 24.0 12.3 28.5 23.0 0.01317 22.5 12.6 12.6 25.0 23.0 0.01317 20.0 13.0 22.0 22.0 23.0 0.01317 19.0 13.2 240 16.0 23.0 0.01317 12.0 14.3 240 15.0 23.0 0.01317 10.0 14.8 480 15.0 23.0 0.01317 10.0 14.8 240 15.0 23.0 0.01317 10.0 14.8 240 15.0 23.0 0.01317 10.0 14.8 240 15.0 23.0 0.01317 10.0 14.8 240 15.0 23.0 0.01317 10.0 14.8 240 15.0 23.0 0.01317 10.0 14.8 240 15.0 23.0 0.01317 10.0 14.8 240 15.0 23.0 0.01317 10.0 14.8 240 15.0 23.0 0.01317 10.0 15.1	0.0	5.5	35.0			7 29.0					
2 30.0 23.0 0.01317 24.0 12.3 2.483 0.033 48.0 48.0 28.5 28.5 23.0 0.01317 22.5 12.6 1.774 0.023 45.0 45.0 25.0 23.0 0.01317 20.0 13.0 1.275 0.017 40.0 30 22.0 23.0 0.01317 19.0 13.7 0.675 0.009 32.0 60 20.0 23.0 0.01317 14.0 14.0 0.483 0.006 28.0 24.0 18.0 23.0 0.01317 12.0 14.8 0.247 0.003 20.0 24.0 24.0 15.0 23.0 0.01317 10.0 14.8 0.247 0.003 20.0 20.0 480 15.0 23.0 0.01317 10.0 14.8 0.176 0.003 20.0 20.0 1440 13.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 20.0 15.0 23.0 0.01317 7.0 15.1 0.103 0.0103 17.0 15.1 0.103 0.001 14.0 20.0 15.0 23.0 0.01317 2.0 15.1 0.103 0.0103 20.0 15.0 23.0 0.01317 2.0 15.1 0.103 0.0103 20.0 15.0 23.0 0.01317 2.0 15.1 0.103 0.001 14.0 20.0 15.1 23.0 0.01317 2.0 15.1 0.103 0.001 14.0 20.0 15.1 25ml	2 30.0 23.0 0.01317 24.0 12.3 4 28.5 23.0 0.01317 22.5 12.6 8 26.0 23.0 0.01317 20.0 13.0 15 25.0 23.0 0.01317 19.0 13.2 60 20.0 23.0 0.01317 14.0 14.0 120 18.0 23.0 0.01317 12.0 14.3 480 15.0 23.0 0.01317 10.0 14.6 480 15.0 23.0 0.01317 10.0 14.8 480 15.0 23.0 0.01317 10.0 14.8 Graduate #: 2 Dispersing Agent. Sodium H		+	32.0								
4 28.5 23.0 0.01317 22.5 12.6 1.774 0.023 45.0 8 26.0 23.0 0.01317 20.0 13.0 1.275 0.017 40.0 15 25.0 23.0 0.01317 19.0 13.7 0.675 0.009 32.0 120 20.0 23.0 0.01317 14.0 14.0 0.483 0.006 28.0 120 18.0 23.0 0.01317 12.0 14.8 0.247 0.003 20.0 1440 15.0 23.0 0.01317 7.0 14.8 0.176 0.002 18.0 1440 13.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 Graduate #: 2 Dispersing Agent Sodium Hex Amount: 125ml	4 28.5 23.0 0.01317 22.5 12.6 8 26.0 23.0 0.01317 20.0 13.0 15 25.0 23.0 0.01317 19.0 13.2 30 22.0 23.0 0.01317 16.0 13.7 120 18.0 23.0 0.01317 12.0 14.3 240 16.0 23.0 0.01317 10.0 14.6 480 15.0 23.0 0.01317 10.0 14.8 480 15.0 23.0 0.01317 7.0 14.8 1440 13.0 23.0 0.01317 7.0 15.1 Graduate #: 2 Dispersing Agent. Sodium H		2	30.0		l	7 24.0					
8 26.0 23.0 0.01317 20.0 13.0 1.275 0.017 40.0 15 25.0 23.0 0.01317 19.0 13.7 0.675 0.002 32.0 22.0 23.0 0.01317 14.0 14.0 0.483 0.006 28.0 120 18.0 23.0 0.01317 12.0 14.8 0.345 0.005 24.0 240 16.0 23.0 0.01317 10.0 14.6 0.247 0.003 20.0 1440 15.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 Graduate #: 2 Dispersing Agent Sodium Hex Amount: 125ml	8 26.0 23.0 0.01317 20.0 13.0 15 25.0 23.0 0.01317 19.0 13.2 30 22.0 23.0 0.01317 16.0 13.7 60 20.0 23.0 0.01317 14.0 14.3 120 18.0 23.0 0.01317 12.0 14.8 480 15.0 23.0 0.01317 10.0 14.8 1440 13.0 23.0 0.01317 7.0 15.1 Graduate #: 2 Dispersing Agent. Sodium H		4	28.5			7 22.5					
15 25.0 23.0 0.01317 19.0 13.7 0.937 0.012 38.0 30 22.0 23.0 0.01317 16.0 13.7 0.675 0.009 32.0 60 20.0 23.0 0.01317 14.0 0.483 0.006 28.0 120 12.0 14.0 0.483 0.005 28.0 240 18.0 23.0 0.01317 12.0 14.8 0.0345 0.005 24.0 480 15.0 23.0 0.01317 9.0 14.8 0.002 18.0 1440 13.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 Graduate #: 2 Dispersing Agent Sodium Hex Amount: 125ml	15 25.0 23.0 0.01317 19.0 13.2 30 22.0 23.0 0.01317 16.0 13.7 60 20.0 23.0 0.01317 14.0 14.0 120 18.0 23.0 0.01317 12.0 14.8 480 15.0 23.0 0.01317 10.0 14.8 1440 13.0 23.0 0.01317 7.0 15.1 Graduate #: 2 Dispersing Agent. Sodium H		8	26.0				-				
30 22.0 23.0 0.01317 16.0 13.7 0.675 0.009 32.0 32.0 50 50 50 50 50 50 50 50 50 50 50 50 50	30 22.0 23.0 0.01317 16.0 13.7 60 20.0 23.0 0.01317 14.0 14.0 120 18.0 23.0 0.01317 12.0 14.3 480 15.0 23.0 0.01317 10.0 14.8 1440 13.0 23.0 0.01317 7.0 15.1 Graduate #: 2 Dispersing Agent. Sodium H		15	25.0								
60 20.0 23.0 0.01317 14.0 14.0 0.483 0.006 28.0 28.0 12.0 18.0 23.0 0.01317 12.0 14.8 0.345 0.005 24.0 24.0 24.0 16.0 23.0 0.01317 10.0 14.8 0.247 0.003 20.0 14.8 15.0 23.0 0.01317 9.0 15.1 0.103 0.001 14.0 14.0 14.0 13.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 25.0 0.01317 2.0 0.001 0.001 14.0 0.001 0.001 14.0 0.001 0.0	60 20.0 23.0 0.01317 14.0 14.0 14.0 12.0 18.0 23.0 0.01317 12.0 14.3 14.0 15.0 23.0 0.01317 10.0 14.8 14.0 15.0 23.0 0.01317 9.0 14.8 14.0 13.0 23.0 0.01317 7.0 15.1 Graduate #: 2 Dispersing Agent: Sodium H		30	22.0								
120 18.0 23.0 0.01317 12.0 14.3 0.345 0.005 24.0 24.0 24.0 16.0 23.0 0.01317 10.0 14.8 0.247 0.003 20.0 14.8 15.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 14.0 Graduate #: 2 Dispersing Agent Sodium Hex	120 18.0 23.0 0.01317 12.0 14.3 240 16.0 23.0 0.01317 10.0 14.8 480 15.0 23.0 0.01317 9.0 14.8 1440 13.0 23.0 0.01317 7.0 15.1 Graduate #: 2 Dispersing Agent Sodium H		90	20.0					,	1		
240 16.0 23.0 0.01317 10.0 14.6 0.247 0.003 20.0 20.0 480 15.0 23.0 0.01317 9.0 14.8 0.176 0.002 18.0 1440 13.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 Graduate #: 2 Dispersing Agent Sodium Hex Amount: 125ml	240 16.0 23.0 0.01317 10.0 14.6 480 15.0 23.0 0.01317 9.0 14.8 14.8 14.0 13.0 23.0 0.01317 7.0 15.1 Eraduate #: 2 Dispersing Agent: Sodium He		120	18.0		١						
480 15.0 23.0 0.01317 9.0 14.8 0.176 0.002 18.0 1440 13.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 Amount: 125ml Graduate #: 2 Dispersing Agent Sodium Hex	480 15.0 23.0 0.01317 9.0 14.8 1440 13.0 23.0 0.01317 7.0 15.1 Graduate #: 2 Dispersing Agent: Sodium Head of the state of the		240	16.0		L						
1440 13.0 23.0 0.01317 7.0 15.1 0.103 0.001 14.0 14.0 16.10 14.0 16.10 14.0 17.0 17.0 14.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	1440 13.0 23.0 0.01317 7.0 15.1 Graduate #: 2 Dispersing Agent Sodium H		480	15.0		1						
Graduate #: 2 Dispersing Agent Sodium Hex Amount: 125m	Graduate #: 2 Dispersing Agent:		1440	13.0					0.103		14	
		Administer # 794968		Graduate	2	1	1		Jium Hex			25ml
	Density of Solids:	lensity of Solids:										
	Description of Sample.	Locariotion of Sample:										

Geonorth Engineeri 1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

Mount Polley Mine

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Likely

Stage 6

CONTRACTOR

DATE TESTED 2008. Jul. 25 DATE RECEIVED 2008. Jul. 21 DATE SAMPLED 2008. Jul. 15 PROCTOR NO. 7

INSITU MOISTURE N/A % Client SAMPLED BY

SR **TESTED BY**

SUPPLIER

R-S6-ZS-02-08 SOURCE

MATERIAL IDENTIFICATION MAJOR COMPONENT TILL 38MM SIZE

DESCRIPTION **ROCK TYPE**

COMPACTION STANDARD

COMPACTION PROCEDURE

RAMMER TYPE

PREPARATION

OVERSIZE CORRECTION METHOD AS I'M 4718 RETAINED 4.75mm SCREEN OVERSIZE SPECIFIC GRAVITY TOTAL NUMBER OF TRIALS

Standard Proctor,

ASTM D698

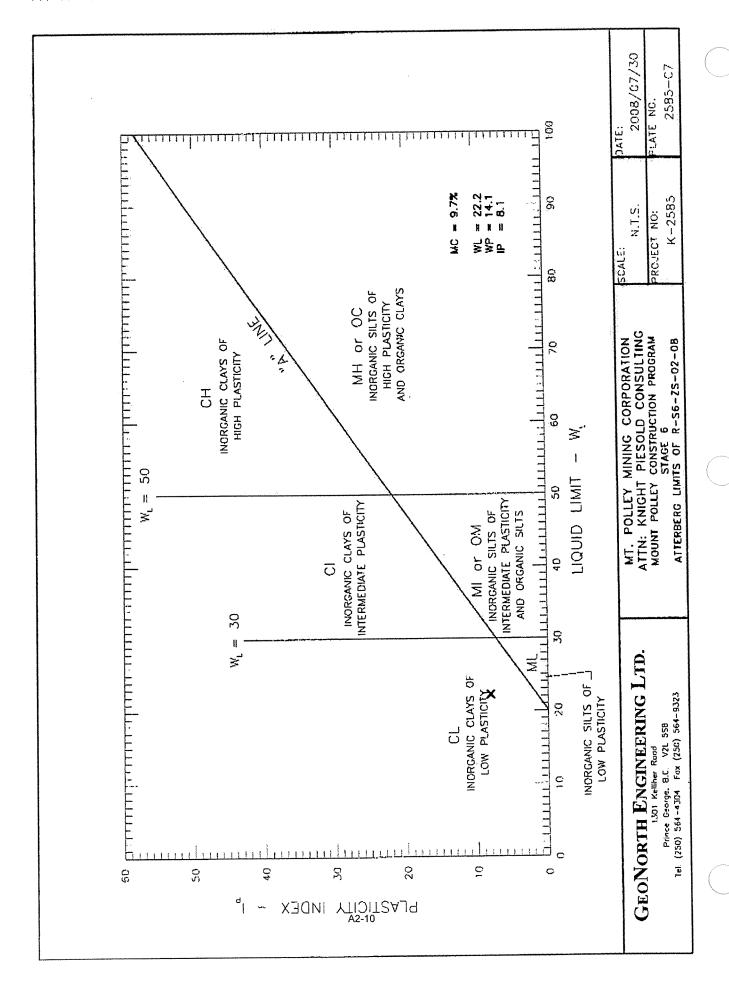
Λ: 101.6mm Mold, Passing 4.75mm

Automatic

Moist

15.7% 2.67 4

2050 2025 DENSITY (kg/m3) 2000 1975 1950 4 1925 1900 12 13 11 7 10 MOISTURE CONTENT (%)


TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	2008	1884	6.6
2	2109	1949	8.2
3	2215	1999	10.8
4	2184	1926	13.4

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	2000	11.0
OVERSIZE CORRECTED	2080	9.5

SPECIFIC GRAVITY (COARSE) = 2.676

SPECIFIC GRAVITY (FINE) = 2.680

Page 1 of 1 2008.Jul.29 GeoNorth Engineering Ltd.

SIEVE AND 1509 IS P. 2/11 10 20 40 60 SERIES

1301 Kelliher Road Prince George, 5C V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Picsold P.O Box 12 Likely, BC

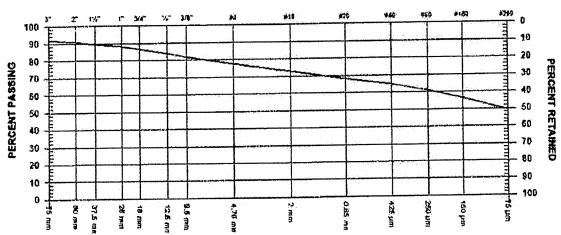
VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Pollcy Construction Program Stage 6

Mount Polley Mine

Likely


CONTRACTOR

SIEVE TEST NO. 3

DATE RECEIVED 2008. May. 27 DATE TESTED 2008. May. 30 DATE SAMPLED 2008. May. 20

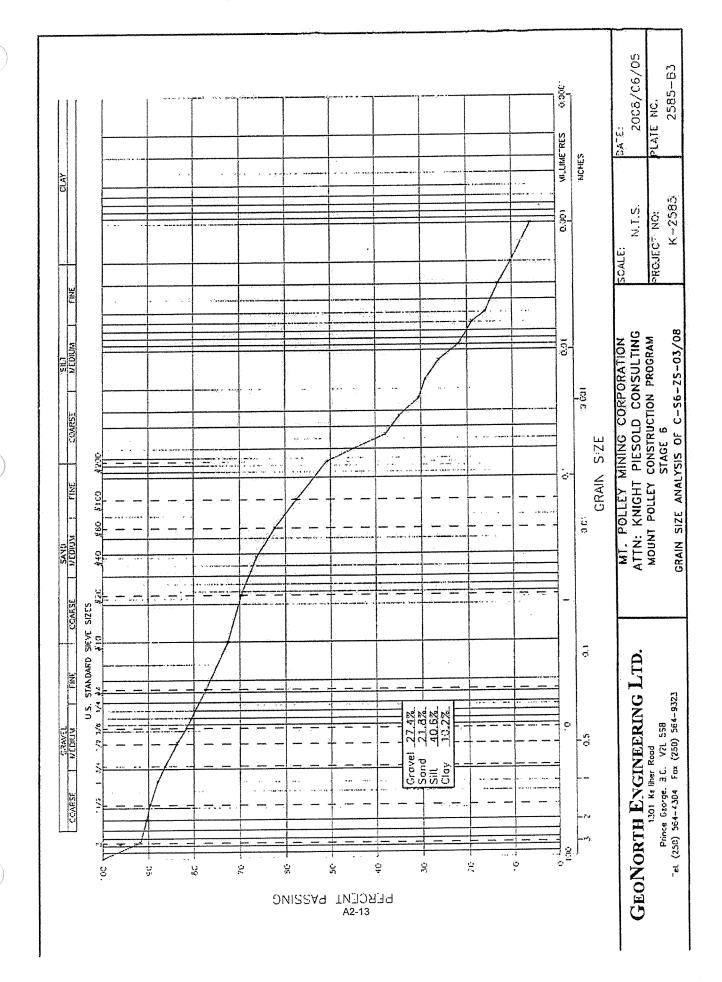
Client SAMPLED BY SUPPLIER DJ **TESTED BY** R-S6-ZS-03/08 SOURCE TEST METHOD WASHED SPECIFICATION

MATERIAL TYPE TILL

GRAVE	L SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	50 r 37.5 r 25 r 19 r 12.5 r	mm mm mm mm mm mm	91.8 90.5 89.6 88.0 86.4 83.7	·

SAND SIZE	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4	4.75 mm	77.4	
No. 10	2.00 mm	72.6	
No. 20	850 µm	68.3	
No. 40	425 µm	64.7	
No. 60	250 µm	60.7	
No. 100	150 µm	56.3	
No. 200	75 µm	49.5	

COMMENTS


0% PASSING THE 4"

Page 1 of 1

2008.Jun.04

GeoNorth Engantaring Ltd.

Client Mon	lient: Mount Polley Mining	Client: Mount Delley Mining Com Att		n. Knight Piesold					Date: June 4, 2008	4, 2008	
Project Name: MPCP Stage 6	ne: MPCP	Stage 6							Project #: K-2585	K-2585	-
Source/1 ocation: R-S6-ZS-03/08	ation: R-S	16-ZS-03/08			***************************************				Type: TILL		
Sample #:			Test #:		Hole #:		Depth:		Time:		
Sampled By: Client	r. Client			Tested By:	SR				Checked By: NK	v. NK	
Date Sampled: 05.20.08	ed: 05.2 0 .0	38		Date Recei	Date Received: 05.27.08	08			Date Teste	Date Tested: 06.02.08	
Initia	Initial Moisture Content	Content		Sieve Analysis	nalysis			Hydrom	Hydrometer Sieve Analysis	Analysis	
					·	% Finer			Total Wt.		% Finer
				Weight	Total Wt.	Orig.			Finer	5	Than Orig
			Sieve No.	Retained	Passing	Samp.	Sieve No.	Retained	Than	Than	Samp.
Tare No.			38.1				10				0.27
∞ಶ	Таге	1380.7	25.4				20				69.7
~	Tare	1256.1	19.0				40				66.3
E		124.6					90		42.9	85.8	62.3
Tare Wit		181.3					100	3.2			57.6
ing Of Day Soil	Soil	1074 8	4				200	·	35.0	70.0	50.B
Moiefure Contant %	Contant %	11.6			SEE WASHED SIEVE	:VE	Pan	35.0			
Day Ma Of S	and olome	County Of Completion Initial Moisture					Total	50.0			
2 2 44: 0							I Inwashed W!	W!=			-
(100xWet So	nii Wt.)/(100 +	:(100xWet Soil Wt.)/(100 + Initial Moisture)	Total				Tare		Wt. Passing #200	ig #200 =	
	***************************************		l cial								
Ctarting		Flancod	Reading	Temo		Corr. Reading		SQRT(Zr)/T			
S (2)	% - #10	Time (min)	~	(36)	¥	'n	Zr (cm)	(min)	(mm) a	N (%)	N*(%-#10)
50.03			34.0		0.01317	7 28.0	7.11	4.832		56.0	
20.03							12.0	,			
20.02		2	30.0	23.0	0.01317		12.				34.8
20.02											
50.0						7 20.0	13.0			40.0	
50.02					0.01317	7 18.0					26.1
50.0					ľ						
50.0					0.01317	7 13.0	14.2				
50.0				23.0	0.01317	-		,			
50.0			15.0								1.5.1
50.05				23.0			15.1			14.0	
50.0		1440	0.01		0.01317	7 4.0		0.104	00:0	٥	J3.
Hydromete	1 # 7	8	Graduate #:	#: 2		Dispersing Agent:		Sodium Hex		AMOUNT.	III(CZ)
Density of Solids:	Solids:									***************************************	
Description	Description of Sample	ini									00.1703
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											i i fi je prima n

Geonorth Engineerin Lta. 1301 Kelliher Road Prince George, BC V2L5S8

Phone (250)564-4304; fax (250)564-9323

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: C.C. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

CONTRACTOR

Mount Polley Mine

Likely

PROCTOR NO. 3

DATE TESTED 2008. May. 30 DATE RECEIVED 2008. May. 27 DATE SAMPLED 2008. May. 20

INSITU MOISTURE N/A %

Client SAMPLED BY

TESTED BY

DJ

SUPPLIER SOURCE

R-S6-2S-03/08

MATERIAL IDENTIFICATION MAJOR COMPONENT TILL 100MM

DESCRIPTION

POCK TYPE

COMPACTION STANDARD

COMPACTION PROCEDURE

RAMMER TYPE

PREPARATION

OVERSIZE CORRECTION METHOD ASTM 4718

RETAINED 4.75mm SCREEN OVERSIZE SPECIFIC GRAVITY

TOTAL NUMBER OF TRIALS

Standard Proctor,

ASTM D698

Λ: 101.6mm Mold,

Passing 4.75mm

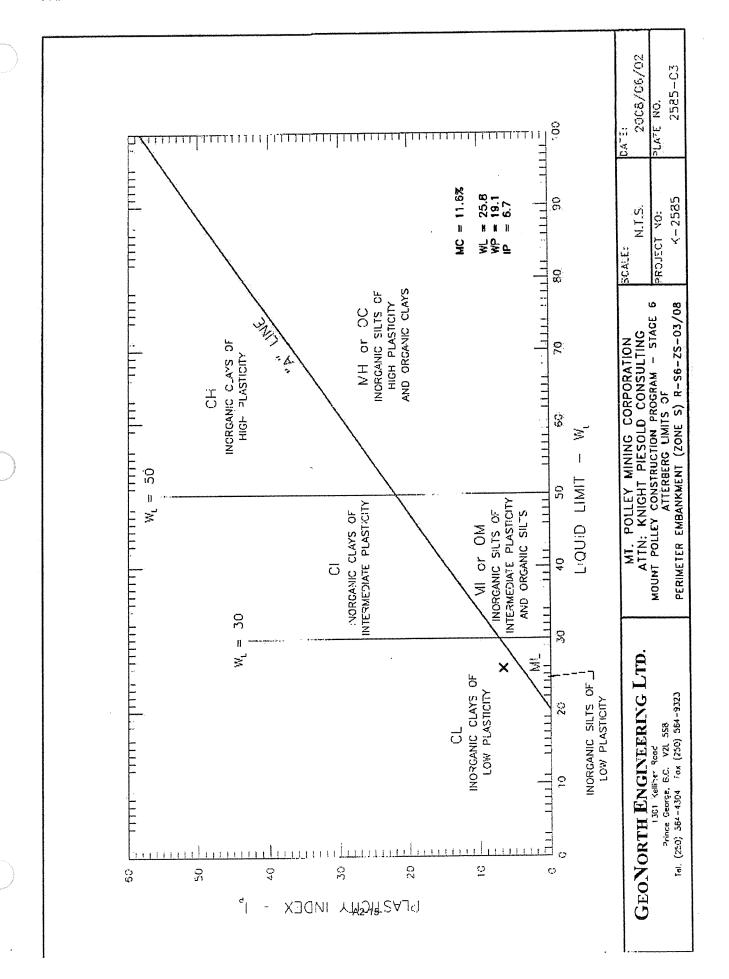
Automatic

Moist

22.0% 2.74

2000 1975 DRY DENSITY (kg/m3) 1950 1925 1900 1875 1850 1825 1800 10 11 12 13 MOISTURE CONTENT (%)

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)	
1	1894	1797	5.4	
2	1960	1818	7.8	
3	2071	1890	9.6	
4	2155	1928	11.8	
5	2138	1862	14.8	


	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1940	12.5
OVERSIZE CORRECTED	2070	10.0

COMMENTS

ECTRIC GRAVITY = 2.742 (COARSE)

SPECIFIC GRAVITY = 2.682 (FINE)

2008.Jun.04 Page 1 of 1 GeoNorth Englishelding Ltd.

GeoNorth Engineering 564 9323

GeoNorth Engineering 564 9323 Jun. 5. 2008_1:31PM

SIEVE ANALTSIS REPORT 10 20 40 60 SERIES

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold

P.O Box 12 Likely, BC VOL -1NO

ATTIN: Ron Martel @ 250-790-2268

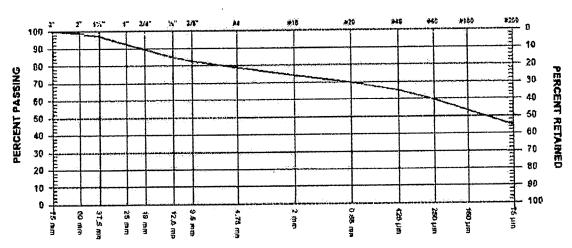
PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

CONTRACTOR

DATE RECEIVED 2008. May. 27 DATE TESTED 2008. May. 30 DATE SAMPLED 2008. May. 20 SIEVE TEST NO. 4


SUPPLIER

SOURCE **SPECIFICATION**

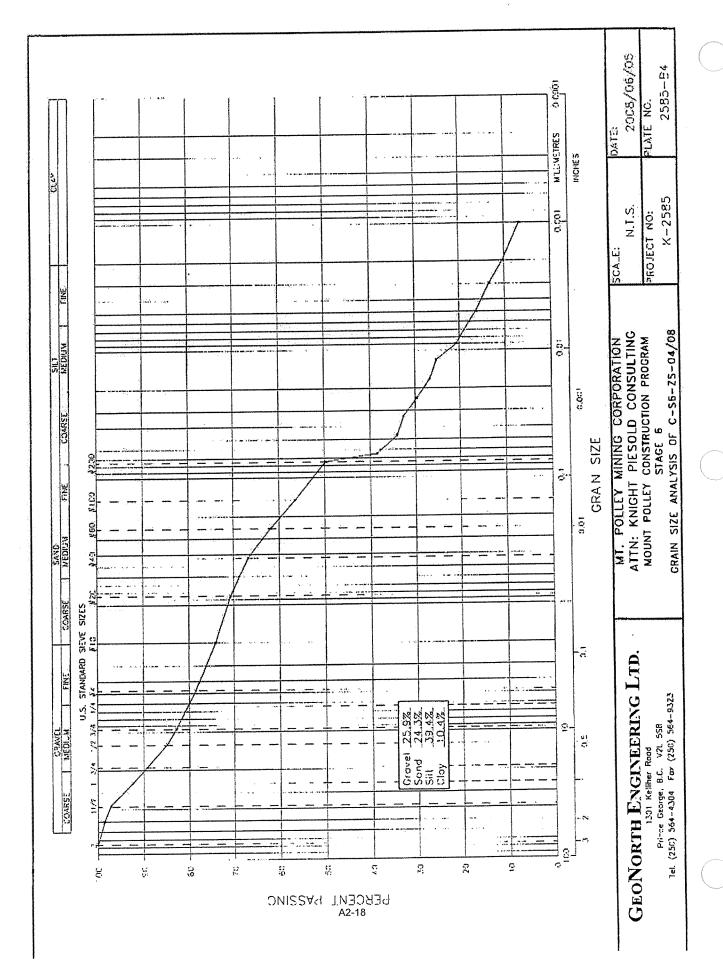
R-S6-ZS-04/08

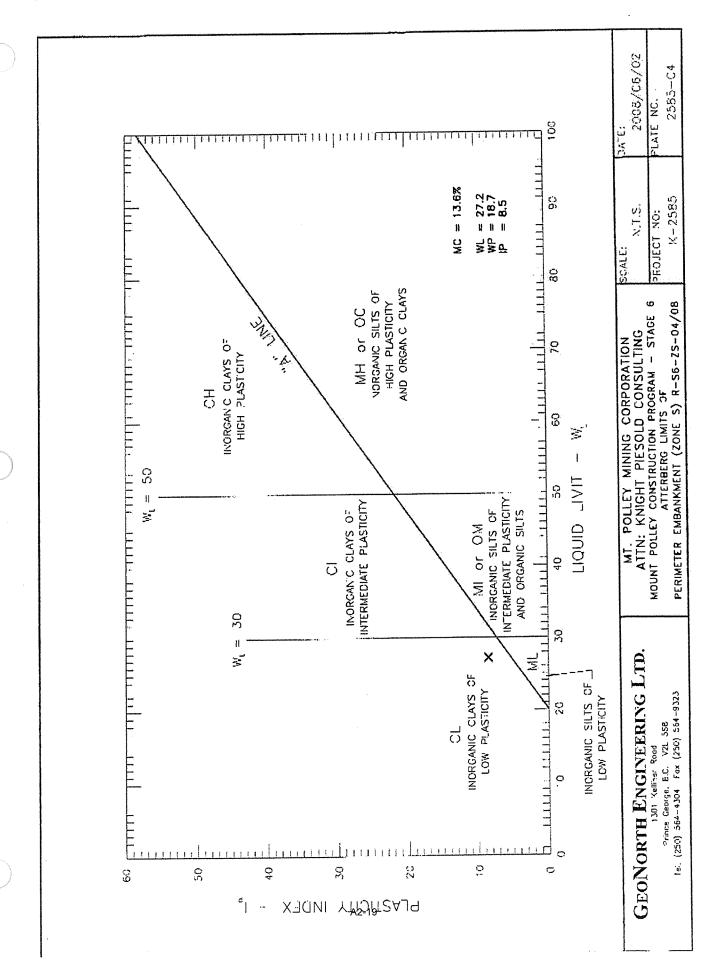
MATERIAL TYPE (1) 1 1.1.

Client SAMPLED BY **TESTED BY** DJ TEST METHOD WASHED

	GRAVE	L SIZES		PERCENT PASSING	GRADATION LIMITS
,	3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm mm mm	100.0 98.6 97.2 92.3 89.3 84.8 82.8	

SAND SIZES	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4 No. 10 No. 20 No. 40 No. 60 No. 100 No. 200	4.75 mm 2.00 mm 850 μm 425 μm 250 μm 150 μm	78.6 74.1 69.8 65.2 59.4 53.2 44.9	


COMMENTS


Page 1 of 1

2008.Jun.05

GooNorth Engladering Ltd.

Client: Mount Polley Mining	Polley B	Client: Mount Polley Mining Com Attr		: Knight Piesold					Date: June 4	4. 2008	
Project Name: MPCP Stage 6	MPCP	Stage 6							Project #: K-2585	K-2585	
Source/Location: R-S6-ZS-04/08	ion: R-S	6-ZS-04/08	***************************************						Type: TILL		
Sample #:			Test#:	-	Hole #:		Depth:		Тіте:		
Sampled By: Client	Stent			Tested By: SR	SR				Checked By: NK	y: NK	
Date Sampled: 05.20.08	: 05.20.0	8		Date Recei	Date Received: 05.27.08	08			Date Tested:	d: 06.02.08	
Initial M	Initial Moisture Content	Content		Sieve Analysis	nalysis			Hydrom	Hydrometer Sieve Analysis	Analysis	
						% Finer Than			Total Wt.		% Finer
				Weight	Total Wit.	Orig.		Weight	Finer	-	Than Orig
- T			Sieve No.	Retained	Passing	Samp.	Sieve No.	Retained	T han 50.0	100.00	Samp. 74.1
MAKE NO.		1234 0	25. A				202	2.3	47.7		
Dry WH & Tare	2 a	1108.9					40	2.6		90.2	
1 5		126.0					9	3.3			
Tare WI		180.3	-				100		38.1	76.2	56.5
Wt Of Dry Sai		928.6					200	4.5		67.2	49.8
Moisture Content %	rtent %	13.6			SEE WASHED SIEVE	VE	Pan	33.6			-
Dry Wt. Of Sample from Initial Moisture	nale from I	Initial Moisture					Total	50.0			
							Unwashed Wt.	VVt.=			
E(100xWet Soil Wt.)/(100 + Initial Moisture)	Mt.)/(100 +	Initial Moisture)	Total				Tare		Wt. Passir	Passing #200 =	
				1		Corr.	3 .	SORTIZENT			
	% - #10	Time (min)	R) (2)	<u>×</u>	ix.	Zr (cm)	(min)	(mm)	(%) N	N*(%-#10)
100	0 741	0.5			0.01317	26.0		4.900			
50.0	0.741		29.0		0.01317		12,5				
50.0	0.741	2			0.01317						32.6
50.0	0.741	4			0.01317		13.0	1.802			
50.0	0.741	8				7 18.0					
50.0	0.741	15	23.0			1				34.0	25.2
50.0	0.741	30									
50.0	0.741	90	18.0								
50.0	0.741	120	17.0	23.0							
50.0	0.741	240	15.0								
50.0	0.741		13.0		0.01317			0.178	0.002		401
50.0	0.741	1440								ה ה	100
Hydrometer #:	£ 794968	3	Graduate	孝. 4		Dispersing Agent		Sodium Hex		Amount	mez.
Density of Solids:	olids:										
Description of Sample:	f Sample	•.•									
											MORTON

Geonorth Engineerir Ltd. 1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn:

Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTIN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

Mount Polley Mine

Likely

CONTRACTOR

PROCTOR NO. 4

DATE TESTED 2008. May. 30 DATE RECEIVED 2008. May. 27 DATE SAMPLED 2008. May. 20

INSITU MOISTURE N/A % Client SAMPLED BY

TESTED BY

DJ

SUPPLIER SOURCE

R-S6-ZS-04/08

MATERIAL IDENTIFICATION MAJOR COMPONENT TILL SIZE

75MM

DESCRIPTION **ROCK TYPE**

COMPACTION STANDARD

COMPACTION PROCEDURE

RAMMER TYPE

PREPARATION

OVERSIZE CORRECTION METHOD ASTM 4718 RETAINED 4.75mm SCREEN

OVERSIZE SPECIFIC GRAVITY TOTAL NUMBER OF TRIALS

Standard Proctor,

ASTM D698

A: 101.6mm Mold,

Passing 4.75mm

Automatic

Moist

21.0%

2.66 5

210	nn .		, 44:2002	hanamaisissud							
A. 11		E									
207	75 -	<u> </u>	 								
		E									
(Em/g) 20:	50 ·	上	 								
Ę		E						Α_			
<u>및</u> 202	25 ·	F	 				3		7		
→ ~~		E	l						` \	\	
₹ 20	UU -	=					7				
DRY DENSITY 19:	75 .	E_									
面 '。	. •	E				/				\	
₩ 195	50 ·	<u> </u>	 		ļ,						
8		E									\
□ 19:	25 ·	E	 	<u> </u>							
		Ē		4	f						5
19	00	E	1		 	<u> </u>	<u> </u>		····		•
		HH	ملال	THI	1111	Ш	111	ШЦ	Ш	Ш	
			 E	1 6 ;	! ? (! B \$! 9 1	' 0 1	! 1. 1	! 2 1	3 14
			8	-							• 17
				MOI	STU	KE (-ON	1 514	1 (70	1	

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)	
1	1972	1.885	4.6	
2	2036	1908	6.7	
3	2144	1972	8.7	
4	2224	2022	10.0	
5	2151	1893	13.6	
			<u> </u>	

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED OVERSIZE CORRECTED	2030 2140	11.0 9.0

COMMENTS

ECIFIC GRAVITY = 2.661 (COARSE)

SPECIFIC GRAVITY - 2.672 (FINE)

Page 1 of 1

2008.Jun.04

GeoNorth En&la @ring Ltd.

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: C.C. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold

P.O Box 12 Likely, BC

VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Trikely

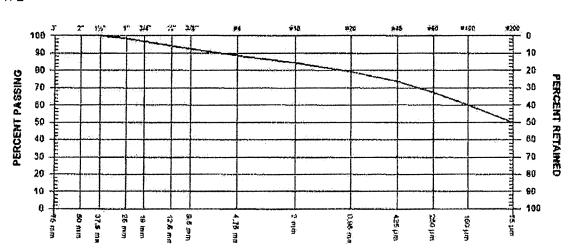
CONTRACTOR

ro

DATE RECEIVED 2008. Aug. 06 DATE TESTED 2008. Aug. 12 DATE SAMPLED 2008. Aug. 04 SIEVE TEST NO. 11

SUPPLIER

SOURCE


R-S6-ZS-05/08

Client SAMPLED BY SR TESTED BY

SPECIFICATION

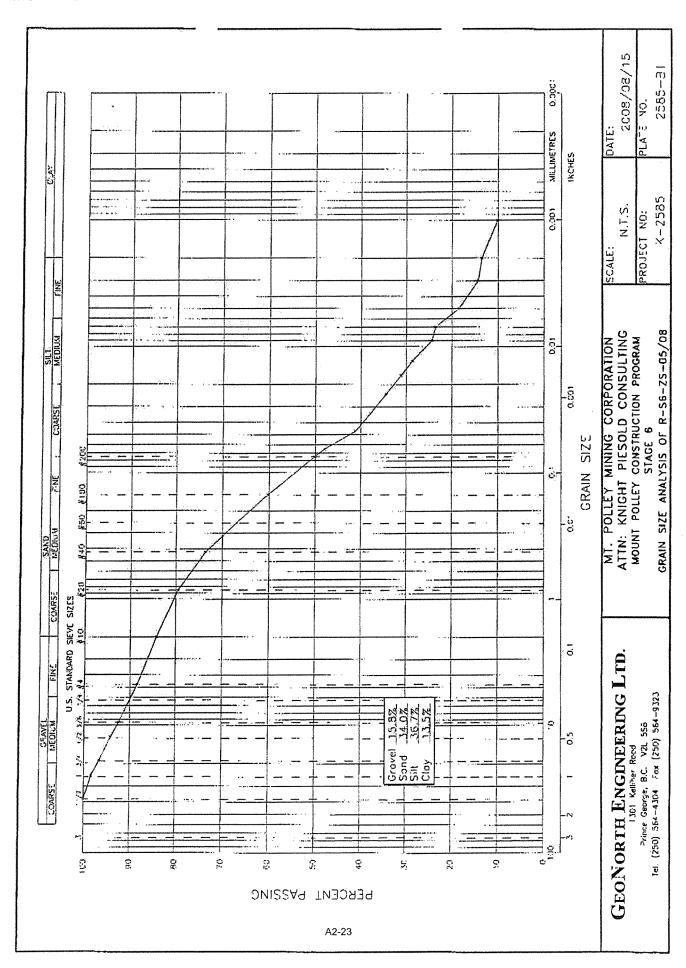
TEST METHOD WASHED

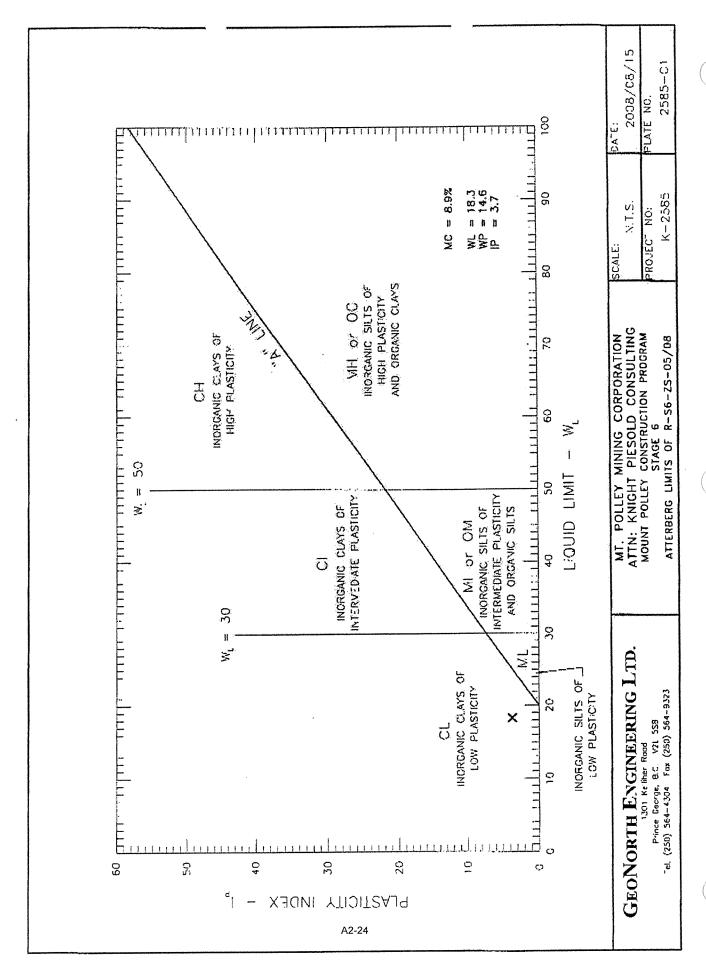
MATERIAL TYPE TILL

GRAVE	L SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm	100.0 98.5 96.8 94.3 92.5	

SAND	SIZES AND FIN	ES	PERCENT PASSING	GRADATION LIMITS
No. 4 No. 1 No. 2 No. 4 No. 6 No. 1 No. 2	0 850 0 425 0 250 00 150	hm hni hw hw ww	88.4 84.2 79.2 73.6 67.1 60.2 49.7	

COMMENTS


LOCATION: PE, CHAINAGE: 2950M, ELEVATION: 952./M, OFFSET: UPSTRHAM SIDE


Page 1 of 1

2008.Aug.15

GeoNorth Engineering Ltd.

Client: Mou	int Polley	Client: Mount Polley Mining Corp. / Kn	/ Knight Piesold	sold					Date: August	ust 15, 2008	
Project Name: MPCP - Stage 6	me: MPCP	. Stage 6							Project #: K-2585	K-2585	
Source/Loc	ration: R&	Source/Location: R-S6-ZS-05/08	The state of the s						Type: TILL		
Sample #:			Test#:		Hole #:		Depth:		Time:		
Sampled By: Client	/: Client			Tested By:	SR				Checked By: NK	3y: NK	
Date Sampled: 08.04.08	ed: 08.04.0	08		Date Received:	ived: 08.06.08	.08			Date Tested: 08.	ed: 08.13.08	
Initial	Initial Moisture Content	Content		Sieve A	Sieve Analysis			Hydrom	Hydrometer Sieve Analysis	Analysis	
						% Finer					
						Than			Total Wit.	i	% Finer
			Sieve No.	Weignt Retained	Passing	Samp.	Sieve No.	Weignt	Than	% riner Than	Samo.
Tare No,			38.1	1			10		50.0		84.2
ا ب	Tare	1178.0					20	2.8	47.2		79.5
Dry Wt. & T.	are	1097.8	19.0				40		43.7	87.4	73.6
Water Wt.		80.2	12.5				09	3.9		79.6	67.0
Tare Wt.		194.7	9.5				100				
Wt. Of Dry Soi	Soil	903.1	4.75				200			59.6	50.2
Moisture Content %	ontent %	8.9	10	SEE W/	WASHED SIE	SIEVE	Pan	29.8			
Dry Wt. Of Sa	ample from	Dry Wt. Of Sample from Initial Moisture					Total	50.0			
746.000	00000						Unwashed Wt	Wt=		:	
F(100xvver so	Wt.)/(10U +	=(IOUXVVET SOIL VVI.)/(IOU + Initial Moisture) 3	Total				Tare		Wt. Passin	Passing #200 ≈	
						Corr.		71.57.7000			
Wt. (g)	% - #10	Time (min)	Resouring R	(OC)	×	R. R.	Zr (cm)	(min)	(mm)	(%) N	N*(%#10)
50.0	0.842						1			57.0	48.0
20.0	0.842		31.0	21.0	0.01348				0.047	49.0	41.3
20.0	0.842	2			0.01348			2.508	0.034	45.0	37.9
50.0	0.842	4			0.01348	20.5					34.5
50.0	0.842	8			0.01348		13.2		0.017		
0'05	0.842	15						0.948		34.0	28.6
20.0	0.842	30		21.0			13.9		-		
50.0	0.842	09			0.01348	14.0	14.0	0.483			23.6
20.0	0.842	120			0.01348	1	:				18.5
50.0	0.842	240	15.0								
90.09	0.842	480	14.5		0.01348	0.8	15.0	0.177	0.002	16.0	
50.0	0.842	1440								12	10.1
Hydrometer #:	# 794968		Graduate #:	: 2		Dispersing	Agent:	Sodium Hex		Amount: 12	125ml
Density of Solids:	olids:										
Description of Sample	of Sample.										
											Notice

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold

P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

CONTRACTOR

PROCTOR NO. 11 DATE TESTED 2008. Aug. 11 DATE RECEIVED 2008. Aug. 06 DATE SAMPLED 2008. Aug. 04

INSITU MOISTURE N/A %

Client SAMPLED BY

SR **TESTED BY**

SUPPLIER R-S6-ZS-05/08 SOURCE

MATERIAL IDENTIFICATION TILL MAJOR COMPONENT 50MM

DESCRIPTION **ROCK TYPE**

COMPACTION STANDARD

COMPACTION PROCEDURE

RAMMER TYPE

PREPARATION

RETAINED 4,75mm SCREEN OVERSIZE SPECIFIC GRAVITY

TOTAL NUMBER OF TRIALS

Standard Proctor,

ASTM D698

A: 101.6mm Mold,

Passing 4.75mm Automatic

Moist

OVERSIZE CORRECTION METHOD ASTM 4718 11.0%

2.65 4

)	2050	~~			T	r	· · · · · · · · · · · · · · · · · · ·	<u> </u>	ri
	2025							·	
kg/m3)	2025	- - -		·					
NSITY (2000			/				3	
DRY DENSITY (kg/m3)	1975			<u> Automoreum</u>					
۵	,,,,,		Í						4
	1925			 					لللد
		6		3 '210M) 1: CONT			2
COMM	MENTS			MIUIŞ.	UKE	CONT	EIA I E.	/0)	

WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
2054	1936	6.1
2150	1994	7.8
2194	1978	10.9
2168	1929	12.4
	DENSITY (kg/m3) 2054 2150 2194	DENSITY (kg/m3) 2054 1936 2150 1994 2194 1978

·	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	2010	9.0
OVERSIZE CORRECTED	2070	8.0

SPECIFIC GRAVITY (COARSE) = 2.647

SPECIFIC GRAVITY (FINES) = 2.674

Page 1 of 1

2008. Aug. 15

GeoNorth Engineering Ltd.

GeoNorth Engineering 564 9323 Aug. 27. 2008_ 8:56AM Geonorth Engineering Lta.

SIEVE ANALISIS P. 2/6RT 10 20 40 60 SERIES

1301 Kelliher Road Prince George, BL :L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Pollcy Construction Program Stage 6

Mount Polley Mine

Likely

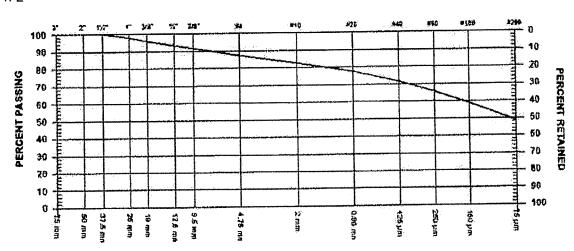
CONTRACTOR

DATE RECEIVED 2008. Aug. 20 DATE TESTED 2008. Aug. 21 DATE SAMPLED 2008. Aug. 15 SIEVE TEST NO. 13

SUPPLIER

R-S6-ZS-06/08

Client SAMPLED BY


SOURCE

VOL -1NO

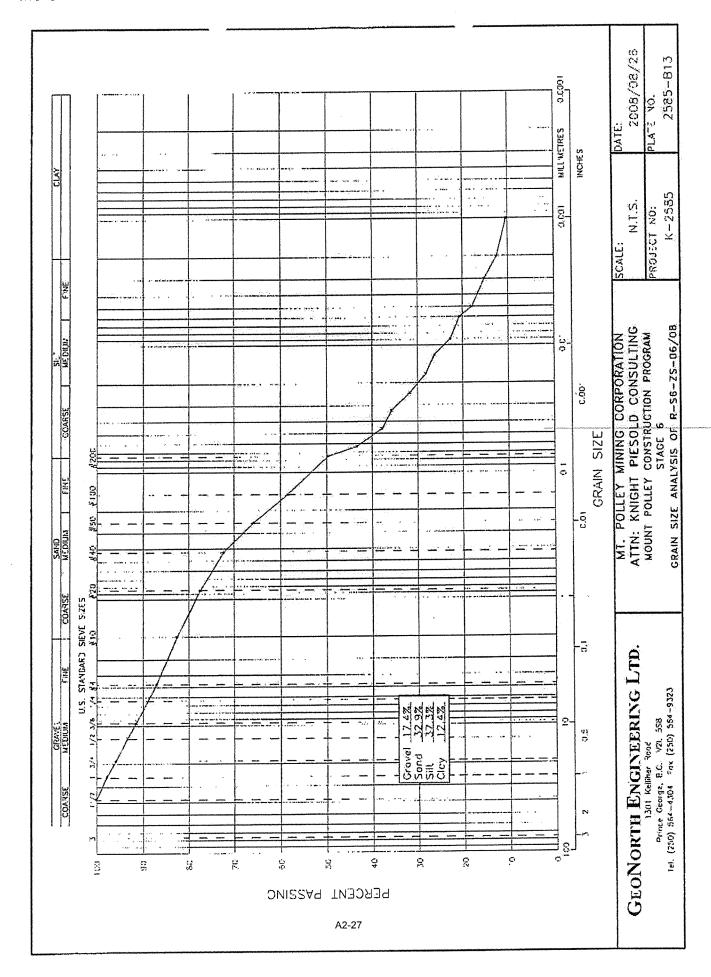
SPECIFICATION

DU **TESTED BY** TEST METHOD WASHED

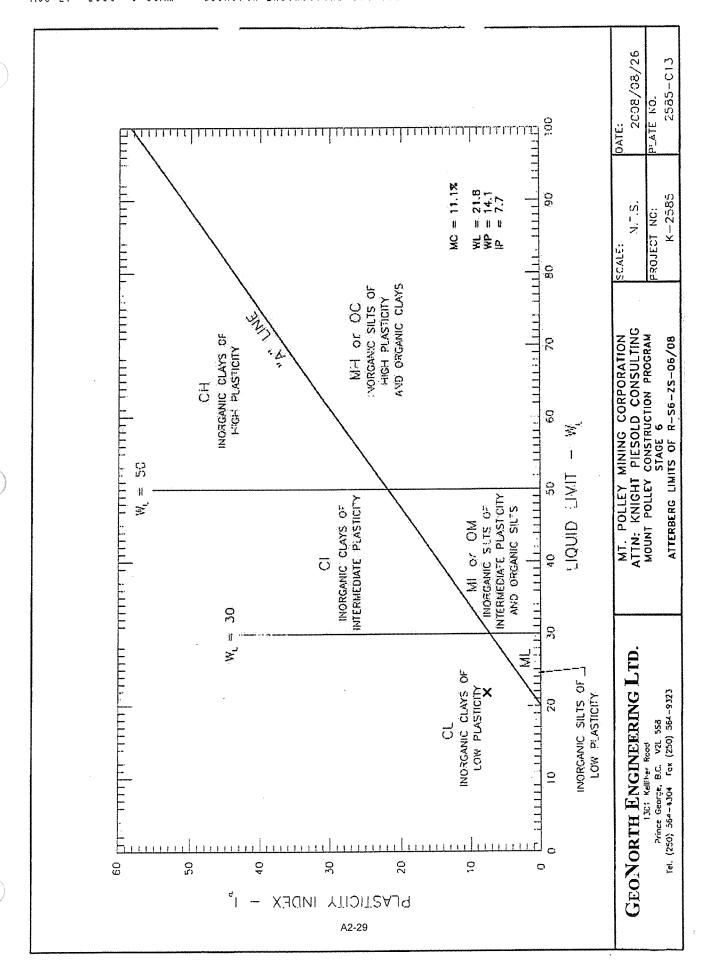
MATERIAL TYPE Brown Glacial Till

GRAVE	L SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 inin 37.5 mm 25 mm 19 inin 12.5 mm 9.5 mm	100.0 97.8 95.9 93.3 91.5	

SAI	ND SIZES	AND FINE	ES	PERCENT PASSING	GRADATION LIMITS
t	4 10 20 40 60 100 200	4.75 2.00 850 425 250 150	hw hw hw hw hw	87.1 82.6 77.3 71.7 65.5 58.9 48.4	·


MOISTURE CONTENT 11.1%

COMMENTS


Location: PE, Chainage: 34+75m, Elevation: u/s

2008.Aug.26 GeoNorth Engineering Ltd. Page 1 of 1

PER.

Colony Wiles Colo	5000	csi ocaignation. Volum 0.422	77 C			***************************************						
Total Management Total Wr Color Total Wr Color	Client: No	unt Polley	Mining / Knigh	t Piesold	i.					Date: Augu	151 26, 2008	
Trest #: Hole #: Depth: Trested By. DJ	Project Na	me: MPCP	- Stage 6							Project#:	K-2585	
Teste # Hole #: Depth: Carted By NK Carted By DJ Carte	Source/Lo	cation: R-S	90/90-SZ-99							Type: Glad	cial Till	
Checked By: DJ Chec	Sample #:			Test #:		Tole #:		Depth:		Time:		
	Sampled B		4 		Tested By:	2				Checked B	iy: NK	
High Moisture Content	Date Samp	led: 08.15.0	98		Date Recei	ved: 08.20.0	08			Date Teste	d: 08.25.08	
Sieve No. Retained Passing Samp. Samp.	hitia	Moisture	Content		Sieve A	nalysis			Hydrom	eter Sieve	Analysis	
Sieve No. Siev							% Finer Then			Total Mit		% Finer
Sieva No. Siev					Weight	Total WR.	Oria.		Weight	Finer	% Finer	Than Orig
State September Septembe				Sieve No.	7	Passing	Samp.	Sieve No.	Retained	Than	Than	Samp.
8 Tare 659,7 (25,4) 25,4 9 3 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 /	Tare No.			38.1				10		0.09		
Vi. Se7 ale 587 5 19.0 40 3.6 5.2 5 87.5 79.7 60 4.7 87.5 79.7 60 7.0	Wet Wt &	Tare	629.7	25.4				20		56.3		
V	Dry Wt. &	are	587.5	19.0				40		52.5		
Color Colo	Water Wt		42.2	12.5				09				65.8
Content % 380.9 4.75 10 SEE WASHED SIEVE Pan 36.1 60.2 4.75 4.10 SEE WASHED SIEVE Pan 36.1 60.0 4.75 4.10 4.75 4.10 4.75 4.10 4.75 4.10 4.75 4.10 4.	Tare Wt		206.6	9.5				100				
Content % 111 10 SEE WASHED SIEVE Total ED0	Wt Of Drv	Soil	380.9					200		36,	60.2	
Soil Wt.)/(100 + Initial Moisture) Total Corr. Moisture (Content %	11.1			ASHED SIE	VE	Pan	36.1				
Soil Wt.)/(100 + Initial Moisture) Total	Dry WI, Of S	Sample from	Initial Moisture					Total	60.0	-		-
Second Not. Not. (100 + Initial Moisture) Total Total Corr. Scatt (2r)r Corr								Unwashed	WL=			
Corr. Corr	-(100xWet S	oil Wt.)/(100 +	- Initial Moisture)	Total				Tare			#200	
Sality Chapter Chapt							Corr.					
0.0826 0.05 38.0 22.0 0.01332 27.5 11.8 3.429 0.046 45.8 0.0 0.826 0.0 1 34.0 22.0 0.01332 27.5 11.8 3.429 0.046 45.8 0.0 0.826 2 32.5 22.0 0.01332 23.0 12.5 1.768 0.024 38.3 0.0 0.826 4 29.5 22.0 0.01332 20.5 12.9 1.270 0.047 34.2 0.0 0.826 8 27.0 22.0 0.01332 20.5 12.9 1.270 0.017 34.2 0.0 0.826 8 27.0 22.0 0.01332 16.5 12.9 1.270 0.017 34.2 0.0 0.826 5 22.0 0.01332 16.5 13.8 0.067 27.5 0.0 0.826 60 21.5 22.0 0.01332 15.0 14.2 0.05 27.7	Starting	3		Reading	Temp	*	Reading P	7r (cm)	SQRT(Zr)/T (min)	(mm) Q	(%) N	N*(%##10)
826 0.046 45.8 45.8 826 1.20 0.04532 27.6 11.8 3.429 0.046 45.8 826 2 32.5 22.0 0.01332 26.0 12.0 2.450 0.033 43.3 826 4 29.5 22.0 0.01332 20.5 12.9 1.270 0.017 34.2 826 15 22.0 0.01332 20.5 12.9 1.270 0.017 34.2 826 15 13.6 0.673 0.002 27.5 826 240 21.5 0.01332 15.0 13.8 0.009 27.5 826 120 0.01332 15.0 14.2 0.343 0.005 27.5 826 120 0.01332 15.0 14.2 0.343 0.005 21.7 826 240 17.5 22.0 0.01332 11.0 14.5 0.046 0.005 12.7 826 480	(B)	Ŗ	Finne (man)	7 AR D	3	1	ı					
826 2 32.5 22.0 0.01332 26.0 12.0 2.450 0.033 43.3 1826 4 29.5 22.0 0.01332 23.0 12.5 1.768 0.024 38.3 1826 8 27.0 22.0 0.01332 20.5 12.9 1.270 0.017 34.2 1826 30 23.0 22.0 0.01332 19.0 13.2 0.037 0.012 31.7 1826 30 23.0 22.0 0.01332 15.0 13.8 0.673 0.009 27.5 1.826 120 0.01332 15.0 13.8 0.480 0.006 27.5 1.826 240 17.5 22.0 0.01332 11.0 14.2 0.343 0.005 21.7 1.826 480 16.0 14.8 0.146 0.003 18.3 1.826 1440 14.0 0.0134 12.0 0.0134 0.004 12.0 <	0.00		Ď	34.0								
826 4 29.5 22.0 0.01332 23.0 12.5 1.768 0.024 38.3 1.826 8 27.0 22.0 0.01332 20.5 12.9 1.270 0.017 34.2 1.826 15 25.5 22.0 0.01332 16.5 13.6 0.673 0.012 31.7 1.826 60 21.5 22.0 0.01332 15.0 13.8 0.673 0.009 27.5 1.826 60 21.5 22.0 0.01332 15.0 14.2 0.343 0.005 25.0 1.826 240 17.5 22.0 0.01332 11.0 14.2 0.246 0.005 21.7 1.826 480 16.0 20.1365 9.0 14.5 0.246 0.003 18.3 1.826 1440 14.0 21.0 0.01348 7.5 15.1 0.102 0.001 15.0 1.826 1440 14.0 0.01348 7.5	9009			32.5								
(826 8 27.0 22.0 0.01332 20.5 12.70 0.017 34.2 1.826 15 25.5 22.0 0.01332 19.0 13.2 0.937 0.012 31.7 1.826 30 23.0 22.0 0.01332 15.0 13.6 0.673 0.009 27.5 1.826 60 21.5 22.0 0.01332 13.0 14.2 0.343 0.006 25.0 1.826 240 17.5 22.0 0.01332 11.0 14.5 0.246 0.005 21.7 1.826 480 16.0 20.0 0.01332 11.0 14.5 0.246 0.003 18.3 1.826 1440 14.0 21.0 0.01348 7.5 15.1 0.102 0.001 15.0 1.826 1440 14.0 21.0 0.01348 7.5 15.1 0.102 0.001 12.5 4968 Graduate #: 1 12.0 Dispersing Agent: Sodium	60.0		-	29.5				·				
1826 15 25.5 22.0 0.01332 19.0 13.2 0.937 0.012 31.7 1.826 30 23.0 22.0 0.01332 16.5 13.6 0.673 0.009 27.5 1.826 120 22.0 0.01332 15.0 14.2 0.343 0.006 25.0 1.826 240 17.5 22.0 0.01332 11.0 14.5 0.246 0.005 21.7 1.826 480 16.0 20.0 0.01365 9.0 14.8 0.176 0.002 15.0 1.826 1440 14.0 21.0 0.01348 7.5 15.1 0.102 0.001 12.5 4968 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml	60.09											
1,826 30 23.0 22.0 0.01332 16.5 13.6 0.673 0.009 27.5 1,826 60 21.5 22.0 0.01332 15.0 13.8 0.480 0.006 25.0 1,826 240 17.5 22.0 0.01332 11.0 14.5 0.246 0.005 21.7 1,826 480 16.0 20.0 0.01365 9.0 14.8 0.003 18.3 1,826 1440 14.0 21.0 0.01365 9.0 14.8 0.002 15.0 1,826 1440 14.0 21.0 0.01348 7.5 15.1 0.001 12.5 4968 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml	0.09											
1.826 60 21.5 22.0 0.01332 15.0 13.8 0.480 0.006 25.0 0.826 120 19.5 22.0 0.01332 13.0 14.2 0.343 0.005 21.7 0.826 240 17.5 22.0 0.01332 11.0 14.5 0.246 0.003 18.3 0.826 480 16.0 20.0 0.01365 9.0 14.8 0.176 0.002 15.0 0.826 1440 14.0 21.0 0.01348 7.5 15.1 0.102 0.001 12.5 4968 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml	0.09					ļ						
1,826 120 19.5 22.0 0.01332 13.0 14.2 0.343 0.005 21.7 0,826 240 17.5 22.0 0.01332 11.0 14.5 0.246 0.003 18.3 1,826 480 16.0 20.0 0.01365 9.0 14.8 0.176 0.002 15.0 1,826 1440 14.0 21.0 0.01348 7.5 15.1 0.102 0.001 12.5 4968 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml	90.09											
1,826 240 17.5 22.0 0.01332 11.0 14.5 0.246 0.003 18.3 1,826 480 16.0 20.0 0.01365 9.0 14.8 0.176 0.002 15.0 1,826 1440 14.0 21.0 0.01348 7.5 15.1 0.102 0.001 12.5 4968 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml	80.0											
7.826 480 16.0 20.0 0.01365 9.0 14.8 0.176 0.002 15.0 0.826 1440 1440 21.0 0.01348 7.5 15.1 0.102 0.001 12.5 14968 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml mple:	0.08											
7.826 1440 14.0 21.0 0.01348 7.5 15.1 0.102 0.001 12.5 14968 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml mple:	009					L						
4968 Graduate #: 1 Dispersing Agent: Sodium Hex Amount: 125ml mple:	60.0							1	0.102			ı
mple:	Hydromete			raduate	- 3		Dispersing	Agent:	lium Hex		Amount: 1	25ml
mple:	Density of	Solids:										
	Description	n of Sample	20									

GeoNorth Engineering 564 9323 Aug. 27. 2008 8:56AM Geonorth Engineering Ltd.

1301 Kelliher Road Prince George, BC Phone (250)564-4304; fax (250)564-9323

No.3192 P. 6/6 MOISTURE - DENSITY RELATIONSHIP REPORT

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Picsold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1N0

ATTN: Ron Martcl @ 250-790-2268

PROJECT Mount Polley Construction Program

Likely

Slage 6

CONTRACTOR

DATE TESTED 2008. Aug. 22 DATE RECEIVED 2008. Aug. 20 DATE SAMPLED 2008. Aug. 15 PROCTOR NO. 13

INSITU MOISTURE N/A %

Client SAMPLED BY

TESTED BY

DJ

SUPPLIER

R-S6-2S-06/08 SOURCE

MATERIAL IDENTIFICATION

MAJOR COMPONENT TILL 2.5MM

SIZE DESCRIPTION

ROCK TYPE

COMPACTION STANDARD

Standard Proctor,

Mount Polley Mine

ASTM D698

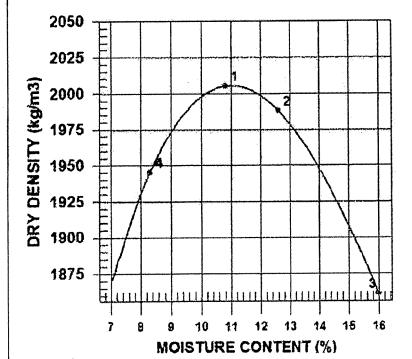
A: 101.6mm Mold, COMPACTION PROCEDURE

Passing 4.75mm

Automatic RAMMER TYPE Moist

PREPARATION

OVERSIZE CORRECTION METHOD ASTM 4718


RETAINED 4.75mm SCREEN

13.0%

OVERSIZE SPECIFIC GRAVITY

2.67 4

TOTAL NUMBER OF TRIALS

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1.	2221	2005	10.8
2	2239	1988	12.6
3	2159	1861	16.0
4	21.06	1945	8.3

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED OVERSIZE CORRECTED	2010 2080	11.0 9.5

COMMENTS

SPECIFIC GRAVITY (COARSE) - 2.675

SPECIFIC GRAVITY (FINES) - 2.685

2008.Aug.26 Page 1 of 1 GeoNorth Engineering Ltd. A2-30

PER. _

SIEVE AND 1762 IS P. 2/6 RT 10 20 40 60 SERIES

1301 Keillher Road Prince George ; V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC

VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

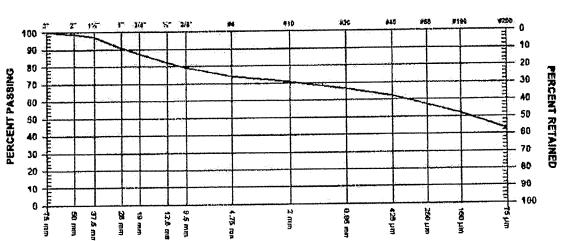
Stage 6

CONTRACTOR

Mount Polley Mine Likely

DATE RECEIVED 2008. Jun. 05 DATE TESTED 2008. Jun. 09 DATE SAMPLED 2008. Jun. 01 SIEVE TEST NO. 5

SUPPLIER SOURCE


ZONE S

R-S6-2S-07/08

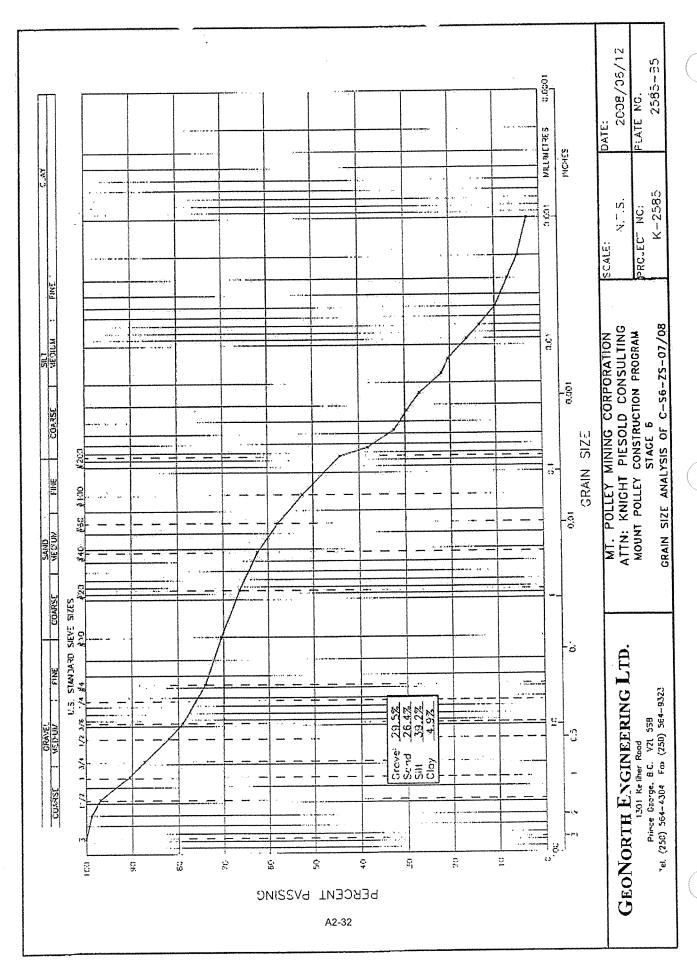
Client SAMPLED BY DJ **TESTED BY** TEST METHOD WASHED

SPECIFICATION

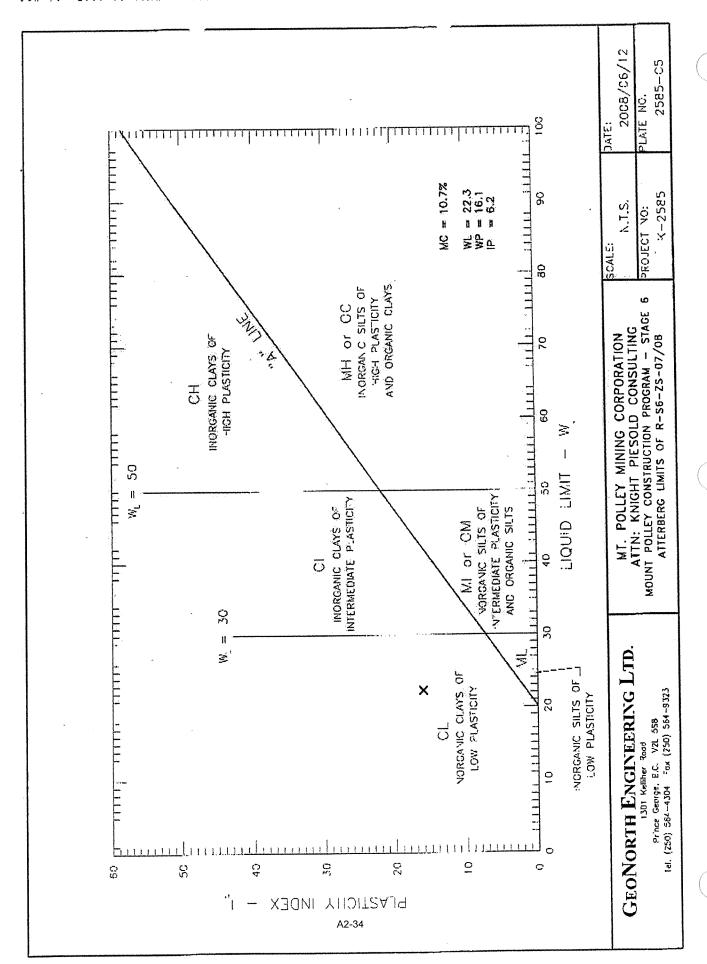
MATERIAL TYPE TILL

GRAVE	EL SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm mm mm	100.0 98.8 96.9 90.6 87.3 82.1 79.0	

SAI	ND SIZES	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	20 40 60 100	4.75 mm 2.00 mm 850 μπ 425 μm 250 μm 150 μm	74.1 70.5 66.4 62.1 57.1 51.8 43.1	


MOISTURE CONTENT 10.7%

AMMENTS


Page 1 of 1

AIN EMBANKMENT 2+700 AT 951.9

2008.Jun.12 GeoNorth Engineering Ltd. Ã2-31

	111111111111111111111111111111111111111	144. 16-1-1	LINE Disease						42 2000	
Project Name: Mount Polley Construc	unt Polley Constr	uction Program	oram - Stade 6	9 8				Project #: K-2585	12, 2000 K-2585	
Source/Location: Zone S	Zone S - R-S6-ZS-07/08	-07/08						Type: TILL		
Sample #:		Test#:		Hole #:		Depth:		Time:	***************************************	
Sampled By: Client			Tested By: DJ	2				Checked By:	y NK	
Date Sampled: 06.01.08	1.08		Date Received:	ved: 06.05.08	08			Date Tested: 06.	d: 06.10.08	
Initial Moisture Content	ure Content		Sieve Analysis	nalysis			Hydrom	Hydrometer Sieve Analysis	Analysis	
					% Finer					
					Than			Total Wft.		% Finer
			Weight	Total Wit.	Orig.		Weight	Finer	% Finer	Than Orig
		Sieve No.	Retained	Passing	Samp.	Sieve No.	Retained	Than	Than	Samp.
Tare No.		38.1				10			•	70.5
Wet Wt. & Tare	1092.7	25.4				20	2.8	47.2		
Dry Wt. & Tare	1004.5	19.0				40	2,9	44.3		
Water Wt.	88.2	_				90	3.3	41.0		57.8
Tare Wt.	181.4	9.5				100	3.9	37.1	74.2	
Wr. Of Dry Soil	823.1	4.75				200	5.8	31.3		44.1
Moisture Content %	% 10.7	10	1.	SEE WASHED SII	SIEVE	Pan	31.3			
Dry Wt. Of Sample from Initial Moisture	om Initial Moisture					Total	0'09			
						Unwashed Wt.	Wt.=			
=(100xvvet Soil vvt.)/(100 + Initial Moisture)	ou + initial Moisture)	Total				Tare		Wt. Passin	Passing #200 =	
		-			Corr.					
Starting	Elapsed	Reading	Temp		Reading		SQRT(Zr)/T			
Wt. (g) % - #10	0 Time (min)	R	(OC)	¥	ж.	Zr (cm)	(min)	D (mm)	(%) N	N*(%#
50.0 0.7	0.705 0.5	33.0						l		***************************************
50.0 0.7	0.705	29.0	23.0	0.01317					46.0	32.4
	0.705				21,0	12.8				
50.0 0.7	0.705	25.0					1.814		38.0	
	0.705 8		22.0	1						21.9
	0.705									
	0.705 30	18.0							23.0	16.2
50.0 0.7	0.705 60			0.01332	9.5		0.495			
	0.705 120									
	705 240				5.0					
	0.705 480					15.7				
	0.705 1440	8.5		0.01332			0.105	0.001	4	2.8
Hydrometer #: 794968	896	Graduate #;	#. 4		Dispersing Agent.		Sodium Hex		Amount: 1:	125ml
Density of Solids:										
Description of Sample:	ple:									
										217300

P. 6/6 No.1762. RELATIONSHIP REPORT

1301 Kelliher Road Prince George ; V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12

Likely, BC VOL -1N0

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Mount Polley Mine

Likely

Stage 6 CONTRACTOR

PROCTOR NO. 5

DATE TESTED 2008. Jun. 10 DATE RECEIVED 2008. Jun. 05 DATE SAMPLED 2008. Jun. 01

INSITU MOISTURE N/A %

Client SAMPLED BY

SR

TESTED BY

Zone S

SUPPLIER SOURCE

R-S6-ZS-07/08

MATERIAL IDENTIFICATION

MAJOR COMPONENT TILL

SIZE

DESCRIPTION **POCK TYPE**

50MM

PREPARATION OVERSIZE CORRECTION METHOD ASTM 4718 RETAINED 4.75mm SCREEN OVERSIZE SPECIFIC GRAVITY

COMPACTION STANDARD

COMPACTION PROCEDURE

RAMMER TYPE

4 TOTAL NUMBER OF TRIALS

Standard Proctor,

ASTM D698

A: 101.6mm Mold,

Passing 4.75mm

Automatic

Moist

25.9% 2.66

*	2050	H							7
≈	2025						3		
g/m/g	2000				2	, , , , , ,	\rightarrow		-
SITY (R	2000 1975 1950 1925					·		\setminus	
DENS	1950			<u>/</u>					•
ORY	1925	4	/		10°				
_	1900					1.1.1.1	1111		
		6) 1 LE CO	-		2 1	3

WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
2010	1891	6.3
2176	1993	9.2
2237	2014	11.1
2199	1944	13.1
	DENSITY (kg/m3) 2010 2176 2237	DENSITY (kg/m3) 2010 1891 2176 1993 2237 2014

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	2020	11.0
OVERSIZE CORRECTED	2150	8.5

IMMENTS

PECIFIC GRAVITY = 2.663 (COARSE) MAIN EMBANKMENT 2:700 AT 951.9m

SPECIFIC GRAVITY = 2.678 (FINE)

2008.Jun.12 GeoNorth Engineering Ltd. Page 1 of 1 A2-35

1301 Kelliher Road Prince George, BC _5\$8 Phone (250)564-4304; fax (250)564-9323

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Mount Polley Mine Likely

CONTRACTOR

DATE RECEIVED 2008. Sep. 05 DATE TESTED 2008. Sep. 09 DATE SAMPLED 2008. Aug. 26 SIEVE TEST NO. 15

PE 4+550, 952.32 R-S6-ZS-08/08

Client SAMPLED BY SR **TESTED BY** TEST METHOD WASHED

SPECIFICATION

SUPPLIER

SOURCE

MATERIAL TYPE TILL

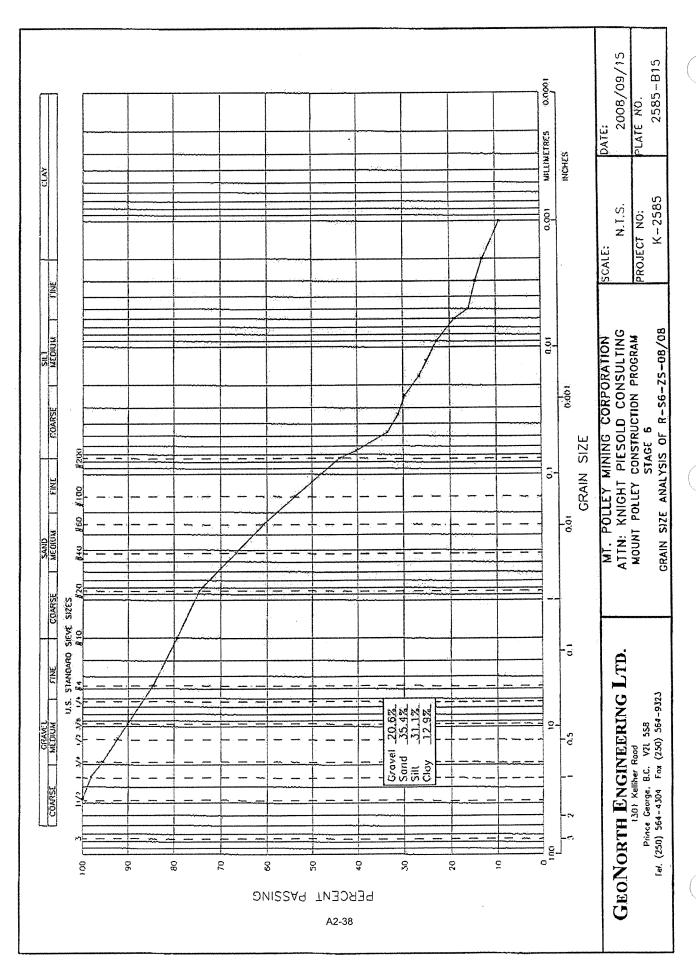
2/4 100 10 90 20 80 PERCENT PASSING PERCENT RETAINED 30 70 ΔĐ 60 50 50 60 40 30 80 20 - 90 - 100 0 86 9R 8 37.6 ma 18 mm

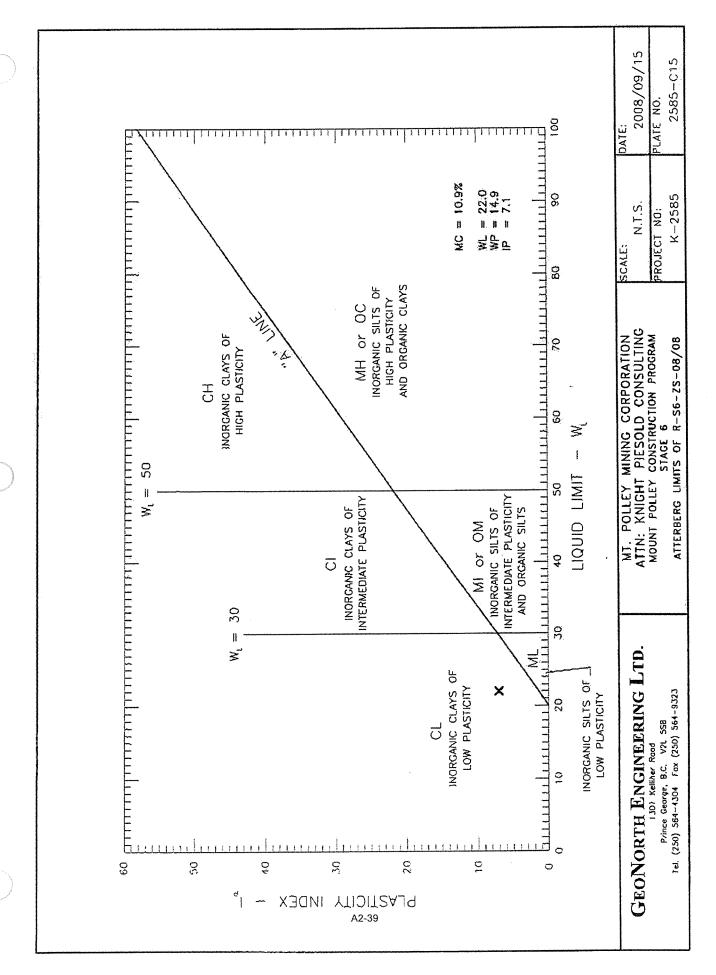
GRAV	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 98.2 95.6 92.3 90.1	

SAND	SIZES	AND FINE	8	PERCENT PASSING	GRADATION LIMITS
No. 2 No. 4 No. 6 No. 5	4 10 20 40 60 100 200	4.75 2.00 850 425 250 150	hw hw hw hw hw	84.6 79.4 75.0 70.3 64.3 57.4 46.5	

MOISTURE CONTENT 10.9%

COMMENTS


2008.Sep.13


GeoNorth Engineering Ltd.

PER.

Page 1 of 1

Client: Mount Polley Mining Corp. / Knight Piesold	Mining Corp. /	Knight Pie	pjos					Date: Sept	Date: Sept 13, 2008	
Project Name: MPCP - Stage	- Stage 6							Project #: K-2585	K-2585	
Source/Location: PE 4+550, 952.32	- 4+550, 952.32	R-S6-ZS-08/08	80/80					Type: TILL	-	
Sample #;		Test#:		Hale#:	A STATE OF THE STA	Depth:		Time:		
Sampled By: Client			Tested By:	DJ				Checked By: NK	ly: NK	
Date Sampled: 08.26.08	08		Date Recei	Date Received: 09.05.08	08			Date Teste	Date Tested: 09.10.08	
Initial Moisture Content	Content		Sieve Analysis	nalysis			Hydrom	Hydrometer Sieve Analysis	Analysis	
					% Finer Than			Total Wt.		% Finer
•		i		Total Wt.	Orig.		Weight	Finer	% Finer	Than Orig
Tare No.		Sieve No.	Кеталпед	Fasiking	оашр.	Sieve No.	Ketained	1 nan 50.0	100,00	Защр. 79.5
Wet Wt. & Tare		25.4				20	3.1	46.9		
Dry Wt. & Tare		19.0				40	2.9			8.99
1		12.5				9	3.9	40.1	80.2	
Tare Wt.		9.5				100	4,6		71.0	53.8
Wt. Of Dry Soil		4.75				200	6.5		58.0	44.0
Moisture Content %	10.9	10		SEE WASHED SIEVE	EVE	Pan	29.0			
Dry Wt. Of Sample from Initial Moisture	Initial Moisture					Total	50.0			
2012 441 . 0 . 111 . 001	A					Unwashed Wt.	Wt.=			
F(100xvvet Soil vvt.)/(100 + initial Moisture)	+ Inioal Moisture) *	Total				Tare		Wt. Passing	ig #200 =	
S. C. Land	20000	Dood	Toma		Corr. Positing		SORT(Zri)(T			
W.L. (a) % - #10	Time (min)	R Carding	(8)	×	, Y	Zr (cm)	(mim)	D (mm)	(%) N	N*(%-#10)
50.0				0.01332		11.9	4.883			
		28.5		0.01332	22.0	12.7	3,559			
50.0 0.759	2		22.0			12.9		0.034		
50.0 0.759	4				19.5	13.1	1.808			
50.0 0.759	8	24.0		0.01332					35.0	28.6
50.0 0.759	15					13.6	8.5			***************************************
50.0 0.759	30									
	09						0.487	0.006		
50.0 0.759	120									
50.0 0.759	240	16.0				14.7			19.0	14.4
50.0 0.759	1 480			0.01332	8.5	14.9	0.176	0.002		
50.0 0.759	1440								12	9.7
Hydrometer #: 794968	8	Graduate #:	#. 1		Dispersing Agent		Sodium Hex		Amount: 13	125ml
Density of Solids:										
Description of Sample	i									
										Nachoo

Sep. 15. 2008 E. 9:16 AMering Dorth Engineering 564 9323

1301 Kelliher Road Prince George, BC .558 Phone (250)564-4304; fax (250)564-9323

RELATIONSHIP REPORT

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

C.C. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

CONTRACTOR

Mount Polley Mine

Likely

DATE TESTED 2008. Sep. 10 DATE RECEIVED 2008. Sep. 05 DATE SAMPLED 2008. Aug. 26 PROCTOR NO. 15

INSITU MOISTURE N/A %

Client SAMPLED BY

LT TESTED BY

SUPPLIER

R-S6-ZS-08/08 SOURCE

MATERIAL IDENTIFICATION MAJOR COMPONENT TILL

DESCRIPTION

ROCK TYPE

COMPACTION STANDARD

Standard Proctor,

ASTM D698

COMPACTION PROCEDURE

A: 101.6mm Mold, Passing 4.75mm

Automatic

RAMMER TYPE

PREPARATION

Moist OVERSIZE CORRECTION METHOD ASTM 4718

RETAINED 4.75mm SCREEN OVERSIZE SPECIFIC GRAVITY 15.0% 2.67

TOTAL NUMBER OF TRIALS

4

2050	E			· · · · · · · · · · · · · · · · · · ·			
2025	=		·				
≘ 2000	<u> </u>						
E 1975	Ē				3	\setminus	
포 1950	Ē			_/			
户 切 1925	=						
DRY DENSITY (kg/m3) 1975 1975 1975 1975 1975 1975 1975 1975	=======================================			2			4,
D 1900	Ë		1				
¥ 1875	Ē						
1850							
1825	= 1	المما	1111	1111	1111	1116	1 1 1
	מאד						
	7				0 1 TENT		2

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	1927	1811	6.4
2	2066	1897	8.9
3	2160	1964	10.0
4	2142	1906	12.4
		<u></u>	

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED OVERSIZE CORRECTED	1990 2070	11.0 9.5

COMMENTS

SPECIFIC GRAVITY (COARSE) = 2.665

SPECIFIC GRAVITY (FINES) = 2.647

2008.Sep.15 Page 1 of 1 GeoNorth Engineering Ltd. A2-40

PER

Sep. 29. 2008- 9:47AMering GeoN GeoNorth Engineering 564 9323

EVE ANO: 406615 F. 2/62T 10 20 40 60 SERIES

1301 Kelliher Road Prince George, BC VzL5S8 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold

P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

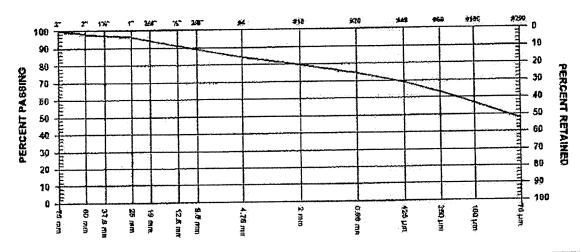
CONTRACTOR

DATE RECEIVED 2008.Sep.22 DATE TESTED 2008.Sep.24 DATE SAMPLED 2008.Sep.17 SIEVE TEST NO. 16

SUPPLIER

SOURCE

R-S6-ZS-09/08


Client SAMPLED BY TESTED BY

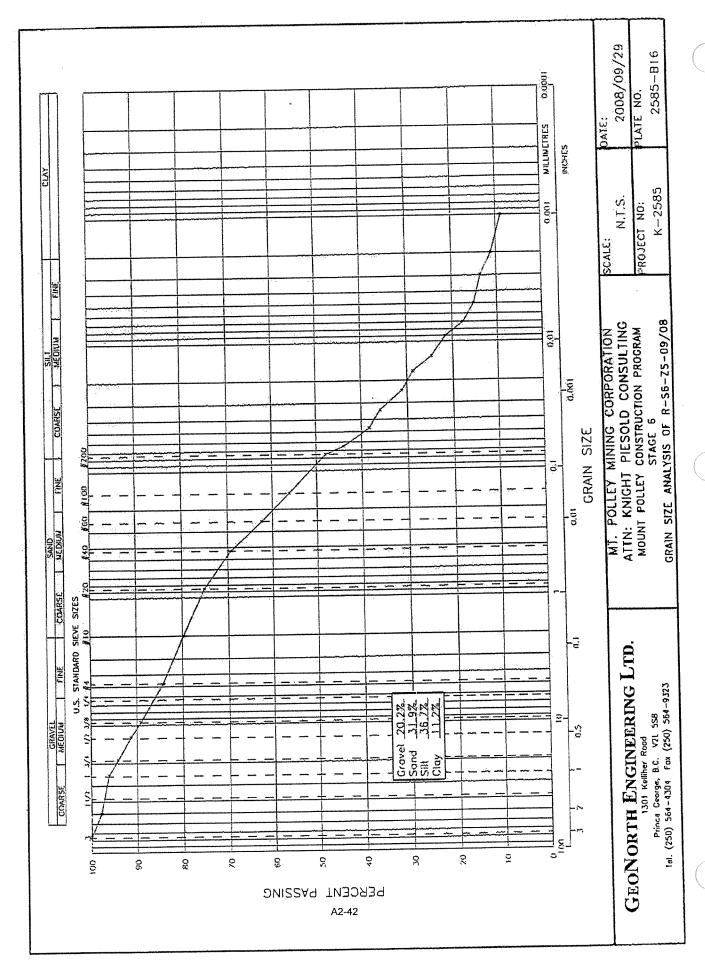
DJ

SPECIFICATION

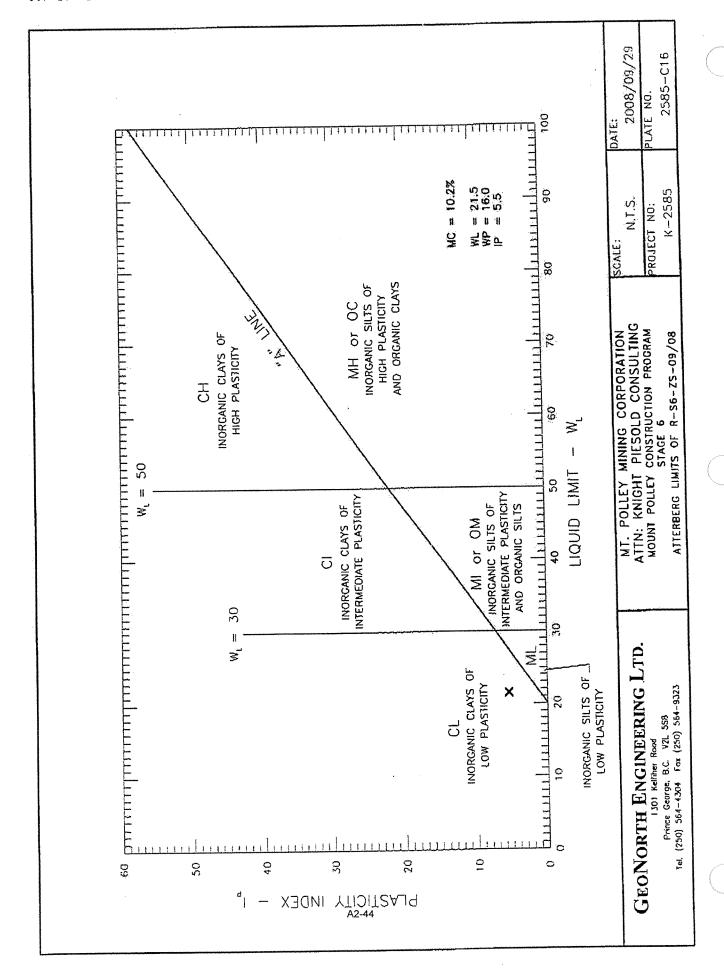
MATERIAL TYPE TILL

TEST METHOD WASHED

GRAVE	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm	100.0 97.9 96.2 94.3 91.3 89.1	


SAND SIZE	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4	4.75 mm	84.3	
No. 10	2.00 mm	79.7	
No. 20	850 µm	74.7	
No. 40	425 µm	69.1	
No. 60	250 µm	62.8	
No. 100	150 µm	56.5	
No. 200	75 µm	47.8	

MOISTURE CONTENT 10.2%


COMMENTS

Location: SE, Chainage: 12+00, Elevation: 952.7m, Offset: c/1

Page 1 of 1 2008.Sep.29 GeoNorth Englishering Ltd.

Citate Manual Dollar Mining	Cost Ocalquiation, Act is contact.	Knight Dissold	Politi					Date: Sept 29, 2008	29, 2008	
Project Name: MPCP - Stade 6	PCP - Stane 6							Project #: K-2585	K-2585	
Sourcell ocation: 8-S6-75-09/08	- R-S6-75-09/08							Type: TILL		
Sample #:		Test#:		Hole #:		Depth:		Time:		
Sampled Bv: Client	1		Tested By: DJ					Checked By:	v: NK	
Date Sampled: 09.17.08	17.08		Date Received:	ved: 09.22.08	08			Date Teste	Date Tested: 09.24.08	
Initial Mois	Initial Moisture Content		Sieve A	Sieve Analysis			Hydrom	Hydrometer Sieve Analysis	Analysis	
					% Finer			Total Wt.		% Finer
			Weight	Total Wt.	Orig.		Weight	Finer	5	Than Orig
		Sieve No.	Retained	Passing	Samp.	Sieve No.	Retained	Than	Than	Samp.
Tare No.		38.1				10		50.0		
Wet Wt. & Tare	1091.3					20				7.67
Dry Will & Tare	1006.9					40	3.7			68.3
	84.4					09		39.1		62.4
Tare Mit	179.8					100	3.9			56.2
MA Of Day Soil	1 708					200			60.0	47.9
Mericanis Content %				SEE WASHED SIEVE	EVE	Pan	30.0			
moistaig contai	foitial Marie					Total	50.0			
Ory vvi. Of Saniple	Ory VVI. Of Sahiple Holls Hiller mosters					I Inwashed Wit	W# =			
:(100xWet Soil Wt.)/	:(100xWet Soil Wt.)/(100 + Initial Moisture)					Tare		Wt. Passing #200	1g #200 =	
		।०ख।								
Starting	Flansed	Reading	Temp		Corr. Reading		SQRT(Zr)/T			
	- #10 Time (min)	<u>~</u>	(<u>(</u>)	¥	E.	Zr (cm)	(min)	D (mm)	N (%)	N*(%-#10)
(A)		5 34 0		0.01348	3 27.5	11.8				
					24	12.3				
		29.0		l.		12.6				
		26.0		L		13,1				
				L			1.291			
000			210	0.01348						
		30 20.0			3 13.5	14.1	0.685		3 27.0	
					11.0					
				L	9.5	14.7				
					8.5					
			210				0.178	0.002	14.	
20.05	0.798 1440	12.0		0.01348	5.5	15.4				8.6
# ,		Gradi	#: 1		Dispersing	Agent:	Sodium Hex		Amount: 1	125ml
Density of Solids										
Description of Sa	amnle.									
odina io landinesa										

GeoNorth Engineering

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Mount Polley Mine Likely

Stage 6

CONTRACTOR

DATE TESTED 2008. Sep. 24 DATE RECEIVED 2008. Sep. 22 DATE SAMPLED 2008. Sep. 17 PROCTOR NO. 16

INSITU MOISTURE N/A %

Client SAMPLED BY DJ

TESTED BY

SUPPLIER SOURCE

R-S6-ZS-09/08

MATERIAL IDENTIFICATION MAJOR COMPONENT TILL

SIZE

50MM

DESCRIPTION **ROCK TYPE**

COMPACTION STANDARD

COMPACTION PROCEDURE

RAMMER TYPE

PREPARATION

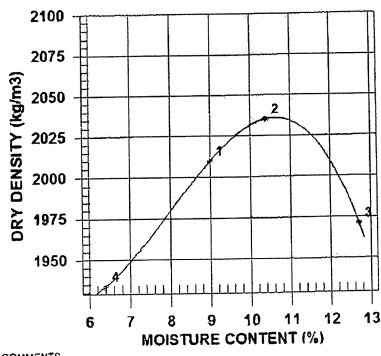
OVERSIZE CORRECTION METHOD ASTM 4718

RETAINED 4,75mm SCREEN OVERSIZE SPECIFIC GRAVITY

TOTAL NUMBER OF TRIALS

Standard Proctor, ASTM D698

A: 101.6mm Mold,


Passing 4.75mm

Automatic

Moist

15.0% 2.67

4

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	2191	2010	9.0
2	2247	2035	10.4
3	2221	1971	12.7
4	2058	1934	6.4
	<u> </u>	<u></u>	1

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	2040	10.5
OVERSIZE CORRECTED	2120	9.0

COMMENTS

SPECIFIC GRAVITY (COARSE) = 2.672

SPECIFIC GRAVITY (FINES) = 2.681

2008.Sep.29 GeoNorth Engineering Ltd. Page 1 of 1

APPENDIX A3

ZONE U RECORD

(Pages A3-1 to A3-4)

1301 Kelliher Road Prince George, BC Phone (250)564-4304; fax (250)564-9323

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

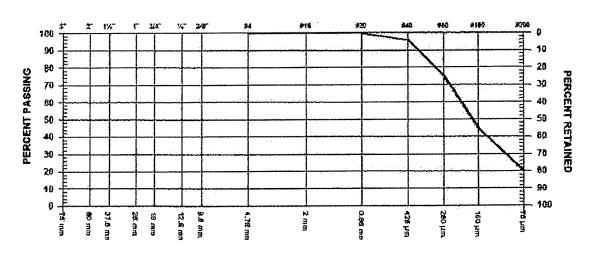
Mount Polley Mine

Likely

CONTRACTOR

DATE RECEIVED 2008.Oct.03 DATE TESTED 2008.Oct.08 DATE SAMPLED 2008.Sep.27 SIEVE TEST NO. 35

SUPPLIER SOURCE


R-S6-ZU-02/08

CLIENT SAMPLED BY EM TESTED BY

SPECIFICATION

MATERIAL TYPE Zone U Sand Cell

TEST METHOD WASHED

GRAVE	. SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0	

No. 4 4.75 mm 99.9 No. 10 2.00 mm 99.8 No. 20 850 μm 99.6 No. 40 425 μm 96.0 No. 60 250 μm 75.3 No. 100 150 μm 44.6	SAN	ND SIZES	AND FINE	ES	PERCENT PASSING	GRADATION LIMITS
No. 200 75 µm 20.1	No. No. No. No.	10 20 40 60 100	2.00 850 425 250 150	wrd wrd wrd wrd wrd	99.8 99.6 96.0 75.3	

8.5% MOISTURE CONTENT

COMMENTS

LOCATION: SE ZONE U, CHAINAGE: 07+00m, ELEVATION: 951.9m

Page 1 of 1 2008.Oct.14 GeoNorth Engineering Ltd.

1301 Kelliher Road Prince George, BC Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

C.C. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Mount Polley Mine

Stage 6

CONTRACTOR

Likely

PROCTOR NO. 17 DATE TESTED 2008.Oct.08 DATE RECEIVED 2008.Oct.03 DATE SAMPLED 2008.Sep.27

INSITU MOISTURE N/A % CLIENT SAMPLED BY

LT

TESTED BY SUPPLIER

ZONE U SAND CELL

SOURCE

R-S6-ZU-02/08

MATERIAL IDENTIFICATION

MAJOR COMPONENT SAND

SIZE

DESCRIPTION **ROCK TYPE**

COMPACTION STANDARD

Standard Proctor,

ASTM D698

Moist

COMPACTION PROCEDURE

A: 101.6mm Mold, Passing 4.75mm

Automatic

RAMMER TYPE

PREPARATION OVERSIZE CORRECTION METHOD None

RETAINED 4.75mm SCREEN

OVERSIZE SPECIFIC GRAVITY

TOTAL NUMBER OF TRIALS

б

6,
20.0

TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
1	1789	1635	9.4
2	1839	1654	11.2
3	1899	1675	13.4
4	1953	1687	15.8
5	1977	1677	17.9
6	1973	1643	20.1

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED OVERSIZE CORRECTED	1690	16.0

COMMENTS

LOCATION: SE ZONE U, CHAINAGE: 07+00m, ELEVATION: 951.9m

Page 1 of 1

2008.Oct.14

SIEVE ANO 443331S P: 10/12r 10 20 40 60 SERIES

1301 Kelliher Road Prince George, B(__5S8 Phone (250)564-4304; fax (250)564-9323

PROJECTNO, K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold

P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

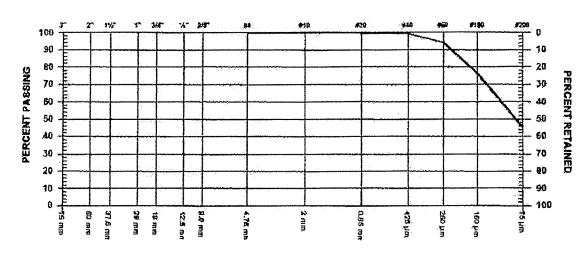
CONTRACTOR

Mount Polley Mine

Likely

SIEVE TEST NO. 36 DATE RECEIVED 2008.Oct.03 DATE TESTED 2008.Oct.08 DATE SAMPLED 2008.Sep.27

SUPPLIER SOURCE


R-S6-ZU-03/08

N-20-20-03

SPECIFICATION

MATERIAL TYPE Zone U Sand Cell

SAMPLED BY CLIENT TESTED BY EM TEST METHOD WASHED

GRAVE	L SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0	

No. 4 4.75 mm 99.9 No. 10 2.00 mm 99.8	SAN	ND SIZES	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 20 850 μm 99.7 No. 40 425 μm 99.3 No. 60 250 μm 94.0 No. 100 150 μm 76.2 No. 200 75 μm 45.3	No. No. No. No.	10 20 40 60 100	2.00 mm 850 µm 425 µm 250 µm 150 µm	99.8 99.7 99.3 94.0 76.2	

MOISTURE CONTENT 7.7%

COMMENTS

LOCATION: PE ZONE U, CHAINAGE: 42+50m, ELEVATION: 951.9m

Page 1 of 1

2008.Oct.14

GeoNorth Engineering Ltd.

Oct.14. 2008 9:58 AMerir GeoNorth Engineering 564 9323

MNO.4433LE P. 11/12TY RELATIONSHIP REPORT

1301 Kelliher Road Prince George, BC __5S8 Phone (250)564-4304; fax (250)584-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn:
Knight Piesold

P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Mount Polley Mine Likely

Stage 6

CONTRACTOR

PROCTOR NO. 18 DATE TESTED 2008.Oct.08 DATE RECEIVED 2008.Oct.03 DATE SAMPLED 2008.Sep.27

INSITU MOISTURE N/A %

SAMPLED BY CLIENT

TESTED BY

Y LT

SUPPLIER ZO

ZONE U SAND CELL

SOURCE

R-S6-ZU-03/08

MATERIAL IDENTIFICATION

MAJOR COMPONENT SAND

SIZE

DESCRIPTION

ROCK TYPE

COMPACTION STANDARD

ASTM D698

COMPACTION PROCEDURE

A: 101.6mm Mold, Passing 4.75mm

Standard Proctor,

Automatic

Moist

RAMMER TYPE PREPARATION

OVERSIZE CORRECTION METHOD None

RETAINED 4.75mm SCREEN

OVERSIZE SPECIFIC GRAVITY

TOTAL NUMBER OF TRIALS

5

1700	ETT		Ι Τ	T		
1690				 	 	
1680			ļ			
	E					
ā 1660	El l					
3 1000	Ē			1-	4	
≥ 1650	丰		2		17	
5 1640				1	117	
DRY DENSITY (kg/m ³) 1650 1650 1620 1610		-/	-	 		t
<u> 7</u> 1620		\mathcal{A}				1
≥ 1610	丰一	/-		 		3
1600	EL 4		<u> </u>	 		3
1590	E,"					
1580				1,,,	<u>] </u>	
1300			 	111/1111	Timber	
	11 1	- •- ·				20 21
		MOIS	TURE (CONTEN	NT (%)	

TRIAL NUMBER			MOISTURE CONTENT (%)
1	1768	1593	11.0
2	1870	1639	14.1
3	1930	1655	16.6
4	1959	1653	18.5
5	1939	1602	21.0

	MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED OVERSIZE CORRECTED	1660	17.0

COMMENTS

LOCATION: PE ZONE U, CHAINAGE: 42+50m, ELEVATION: 951.9m

Page 1 of 1

2008.Oct.14

GeoNorth Engineering Ltd.

per. ___

APPENDIX A4

ZONE F RECORD

(Pages A4-1 to A4-16)

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)56/

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: C.C. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

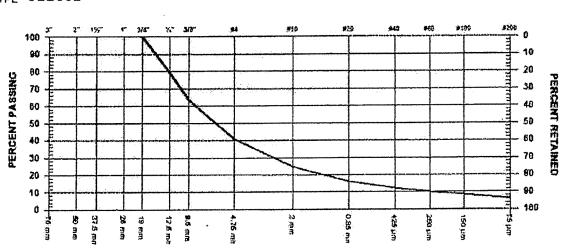
ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Mount Polley Mine Likely

Stage 6 CONTRACTOR

DATE RECEIVED 2008. Sep. 29 DATE TESTED 2008. Sep. 30 DATE SAMPLED 2008. Sep. 23 SIEVETEST NO. 23


SUPPLIER

R-S6-XF-29/08 SOURCE

Client SAMPLED BY DJ

TESTED BY TEST METHOD WASHED

SPECIFICATION MATERIAL TYPE Filter

GRAV	EL SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	nm mm	100.0 79.3 63.5	

SAND	SIZES A	AND FINE	E\$	PERCENT PASSING	GRADATION LIMITS
No. 2 No. 4 No. 6 No. 1		4.75 2.00 850 425 250 150	mm µm	40.9 24.8 16.3 12.3 10.0 8.4 6.6	

COMMENTS

LOCATION: ME, CHAINAGE: 21+00, ELEVATION: 953.0

Page 1 of 1

2008.Oct.07

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564 3

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Picsold Consulting

TO Mount Polley Mining Corp. Attn: Knight Picsold P.O Box 12 Likely, BC VOL -1N0

A''''N: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

CONTRACTOR

DATE RECEIVED 2008. Sep. 29 DATE TESTED 2008. Sep. 30 DATE SAMPLED 2008. Sep. 23 SIEVE TEST NO. 24

SUPPLIER

SOURCE

R-S6-ZF-30/08

SAMPLED BY TESTED BY

Client

SPECIFICATION

MATERIAL TYPE Filler

DJ TEST METHOD WASHED

*60 #20 100 10 90 20 80 PERCENT PASSING 30 70 ŧθ 50 60 40 70 38 80 29 - 90 10 100 0 37 & 910 26 mm 4.76 mn 18 8

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 82.5 69.5	

SAND SIZES AND FINES			PERCENT PASSING	GRADATION LIMITS
No. 4 No. 20 No. 40 No. 60 No. 10 No. 20	850 425 250 0 150	hw ww	46.4 28.1 18.1 13.4 11.0 9.4	·

COMMENTS

LOCATION: ME, CHAINAGE: 22+50, ELEVATION: 953.0

Page 1 of 1

2008.Oct.07

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: C.C. Knight Piesold Consulting

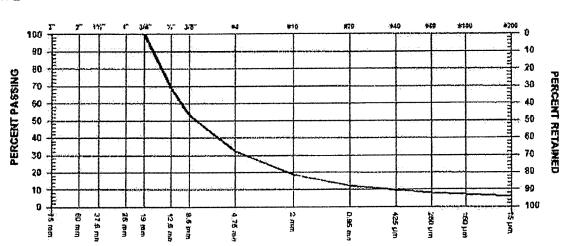
Mount Polley Mining Corp. Alln:

Knight Piesold P.O Box 12 Likely, BC VOI. - 1 NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine


Likely

CONTRACTOR

DATE RECEIVED 2008. Sep. 29 DATE TESTED 2008. Oct. 01 DATE SAMPLED 2008. Sep. 23 SIEVE TEST, NO. 25

Client SAMPLED BY SUPPLIER DJ R-S6-ZF-31/08 **TESTED BY** SOURCE TEST METHOD WASHED **SPECIFICATION**

MATERIAL TYPE Filter

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 68.9 53.2	

SAND SIZES AND FINES			PERCENT PASSING	GRADATION LIMITS
No. 4 No. 10 No. 20 No. 40 No. 60 No. 10	850 0 425 0 250 0 150	nm hu mi hm hw mm	32.5 18.8 12.5 9.8 8.3 7.2 5.8	

COMMENTS

LOCATION: MH, CHAINAGE: 23+50, ELEVATION: 953.0

2008.Oct.07 Page 1 of 1 GeoNorth Engineering Ltd.

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Picsold Consulting

Mount Polley Mining Corp. Attn:

Knight Piesold P.O Box 12 Likely, BC

VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

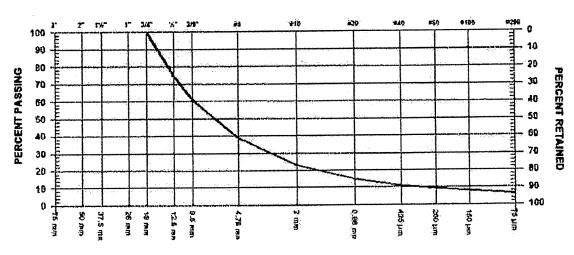
CONTRACTOR

то

DATE RECEIVED 2008. Scp. 29 DATE TESTED 2008. Oct. 01 DATE SAMPLED 2008. Sep. 23 SIEVETEST NO. 26

SUPPLIER

SOURCE


R-S6-ZF-32/08

Client

SPECIFICATION

MATERIAL TYPE Filter

SAMPLED BY DU **TESTED BY** TEST METHOD WASHED

GRAVE	GRAVEL SIZES			GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm	100.0 74.5 60.9	

SAND SIZES AND FINES			PERCENT PASSING	GRADATION LIMITS	
No. No. No. No. No.	4 10 20 40 60 100 200	850 µ 425 µ 250 µ 150 µ	min min min min min min min min min min	38.9 22.8 14.7 11.1 9.2 7.9 6.2	

COMMENTS

LOCATION: ME, CHAINAGE: 24+50, ELEVATION: 954.0

Page 1 of 1

2008.0ct.07

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)584-4304; fax (250)56

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

го Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOI, -1NO

ATTN: Ron Martel @ 250-790-2268

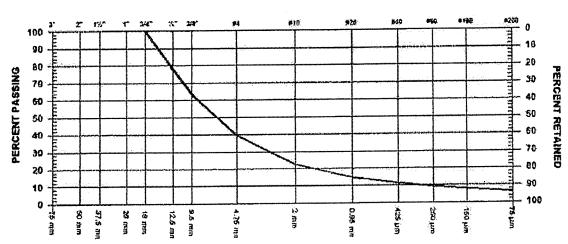
PROJECT Mount Polley Construction Program

Mount Polley Mine

Likely

CONTRACTOR

DATE RECEIVED 2008.Sep.29 DATE TESTED 2008.Oct.01 DATE SAMPLED 2008.Sep.24 SIEVE TEST NO. 27


SUPPLIER

SOURCE SPECIFICATION R-56-ZF-33/08

MATERIAL TYPE Filter

Stage 6

Client SAMPLED BY DJ **TESTED BY** TEST METHOD WASHED

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 77.9 63.3	

SAND SIZES AND FINES			S	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	4 10 20 40 60 100 200	4.75 2.00 850 425 250 150 75	hw hw hw hw	39.6 22.6 15.0 11.5 9.5 8.1 6.4	

COMMENTS

LOCATION: ME, CHAINAGE: 26+00, ELEVATION: 954.0

Page 1 of 1

2008.Oct.07

GeoNorth Engineering Ltd.

PER

SIEVE AND 4313315 1 13/13T 10 20 40 60 SERIES

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

ТО Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOJ. -1NO

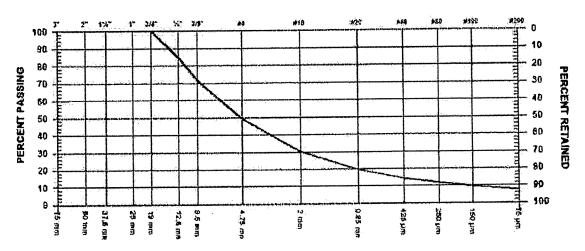
ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

CONTRACTOR


DATE RECEIVED 2008.Scp.29 DATE TESTED 2008.Oct.01 DATE SAMPLED 2008.Sep.24 SIEVE TEST NO. 28

SUPPLIER

SOURCE **SPECIFICATION** R-S6-ZF-34/08

MATERIAL TYPE Filter

Client SAMPLED BY DJ TESTED BY TEST METHOD WASHED

GF	AVEL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 84.9 71.7	

SAND SIZ	ES AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4	4.75 mm	49.3	
No. 10	2.00 mm	30.2	
No. 20	850 µm	19.6	
No. 40	425 µm	14.5	
No. 60	250 µm	11.8	
No. 100	150 µm	9.9	
No. 200	75 µm	7.7	

COMMENTS

LOCATION: ME, CHAINAGE: 27+00, ELEVATION: 953.0

Page 1 of 1

2008.Oct.07

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

1301 Kelliher Road Prince George, BC Fhone (250)564-4304; fax (250)564-9323

Mount Polley Mining Corp. Attn:

Knight Piesold P.O Box 12 Likely, BC

VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

CONTRACTOR

Mount Polley Mine

Likely

PROJECTNO. K 2585

DATE RECEIVED 2008.Oct.03 DATE TESTED 2008.Oct.07 DATE SAMPLED 2008.Sep.26 SIEVE TEST NO. 29

SUPPLIER SOURCE


R-S6-ZF-35/08

SPECIFICATION

MATERIAL TYPE Filter

CLIENT SAMPLED BY DJ **TESTED BY**

TEST METHOD WASHED

GRAV	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	100.0 98.7 89.0 75.6	

SAND SIZES AND FINES			:\$	PERCENT PASSING	GRADATION LIMITS
No. No. No. No.	4 10 20 40 60 100 200	4.75 2.00 850 425 250 150	hw hw hw hw hw ww	50.6 31.7 20.5 15.2 12.2 10.3 8.5	

COMMENTS

LOCATION: 19+50m ME, CHAINAGE: 19+50m, ELEVATION 953.5m

Page 1 of 1

2008.Oct.14

1301 Kelliher Road Prince George, BC Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

cc Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1N0

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

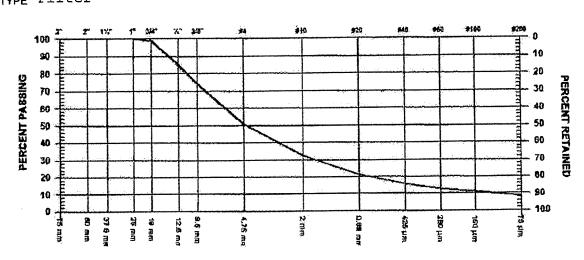
Mount Polley Mine Likely

Stage 6

DATE RECEIVED 2008.Oct.03 DATE TESTED 2008.Oct.07 DATE SAMPLED 2008.Sep.26 SIEVE TEST NO. 30

SUPPLIER

CONTRACTOR


R-S6-ZF-36/08 SOURCE

CLIENT SAMPLED BY DJ **TESTED BY**

SPECIFICATION

MATERIAL TYPE Filter

TEST METHOD WASHED

GRAVEL	. SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 98.6 85.1 73.9	

	1
SAND SIZES AND FINES PERCEN' PASSING	
No. 4 4.75 mm 50.8 No. 10 2.00 mm 32.3 No. 20 850 μm 21.3 No. 40 425 μm 15.9 No. 60 250 μm 12.9 No. 100 150 μm 10.9 No. 200 75 μm 8.7	3 3 9 9

LOCATION: ME, CHAINAGE: 18+00m, ELEVATION: 953.5

Page 1 of 1

2008.Oct.14

Oct.14. 2008**E** 9:57AM**erir**GeoNorth Engineering 564 9323

1301 Kelliher Road Prince George, BC .558 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

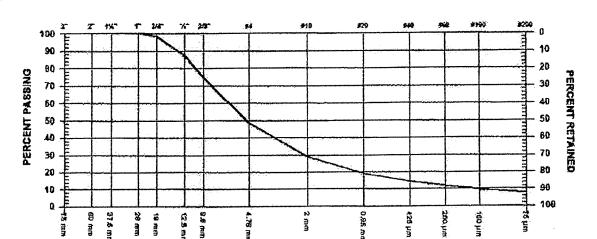
CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn:
Knight Piesold
P.O Box 12
Likely, BC
VOL -1N0

-ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine


Likely

CONTRACTOR

SIEVE TEST NO. 31 DATE RECEIVED 2008.Oct.03 DATE TESTED 2008.Oct.07 DATE SAMPLED 2008.Sep.27

SUPPLIER
SOURCE R-S6-ZF-37/08
SPECIFICATION
MATERIAL TYPE FILTER

SAMPLED BY TESTED BY DJ
TEST METHOD WASHED

GRAVE	L SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm	100.0 98.2 87.1 74.5	

SAND SIZE	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4 No. 10 No. 20 No. 40 No. 60 No. 100 No. 200	4.75 mm 2.00 mm 850 µm 425 µm 250 µm 150 µm 75 µm	48.7 28.8 19.0 14.4 11.7 9.9 7.8	

COMMENTS

LOCATION: ME, CHAINAGE: 16+50m, ELEVATION: 954m

Page 1 of 1 2008.Oct.14 GeoNorth Engineering Ltd.

PER. DE

1301 Kelliher Road Prince George, BC Phone (250)564-4304; fax (250)564-9323

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Mount Polley Mine Likely Stage 6

CONTRACTOR

DATE RECEIVED 2008.Oct.03 DATE TESTED 2008.Oct.07 DATE SAMPLED 2008.Sep.27 SIEVE TEST NO. 32

SUPPLIER R-S6-ZF-38/08 SOURCE

SPECIFICATION

MATERIAL TYPE Filter

CLIENT SAMPLED BY DJ TESTED BY

TEST METHOD WASHED

- 00 - 90	Ē				Ι									<u> </u>	- - 10
	E				T		ľ							=	
BO -	F	 		1	+>					1				7	20
70 ~	Ę	┼╌┼╌							***************************************	+				一事	30
50 ~	Ę_	 	_		4	>	\leftarrow								4D
50 ·	<u> </u>	 _		4	4	ļ	-								- 50
40 -	₭			-	 	<u> </u>		>	31.5	-					- 60
30 -	Ę					<u> </u>	_								- 70
20 -	<u>E</u>	<u> </u>		4	1_	<u> </u>				+					- 80
10 -	<u>E</u>				4_				, <u></u>			_	-		- 90
0 -	E				1_	1								===	- 10
-	75	8 9	왏	ಪ	ដ	çe Ça		2 mm		86.0	1	SHOT THE	蕗	76 µm	

GRAVI	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 99.7 99.1 87.2 76.9	

SAND SIZES	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4	4.75 mm	53.3	
No. 10	2.00 mm	33.1	
No. 20	850 µm	21.6	
No. 40	425 µm	16.1	
No. 60	250 µm	12.9	
No. 100	150 µm	10.8	
No. 200	75 µm	8.5	

COMMENTS

LOCATION: SE, CHAINAGE: 15+25m, ELEVATION: 954.0m

Page 1 of 1 2008.Oct.14 GeoNorth Engineering Ltd.

1301 Kelliher Road Prince George, BC .558 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn:

Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

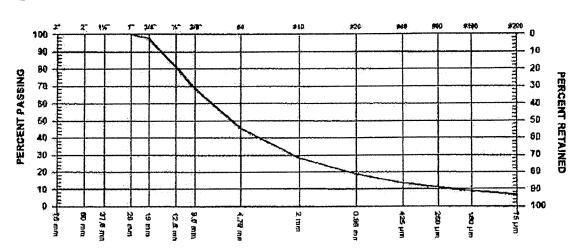
Mount Polley Mine

Likely

CONTRACTOR

DATE RECEIVED 2008.Oct.03 DATE TESTED 2008.Oct.07 DATE SAMPLED 2008.Sep.27 SIEVETEST NO. 33

SUPPLIER SOURCE


R-S6-ZF-39/08

CLIENT SAMPLED BY DJ

SPECIFICATION

MATERIAL TYPE Filter

TESTED BY TEST METHOD WASHED

GRAVI	EL SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm mm mm	100.0 97.3 81.4 68.4	

SAND SI	ZES AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4 No. 10 No. 20 No. 40 No. 60 No. 10 No. 20		45.5 28.2 18.6 13.8 10.9 8.9 6.7	

COMMENTS

LOCATION: PE, CHAINAGE: 28+50m, ELEVATION: 954.0m

Page 1 of 1

2008.Oct.14

SIEVE AND . 4433 IS IP . 7/12T 10 20 40 60 SERIES

1301 Kelliher Road Prince George, BC .588 Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

C.C. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Mount Polley Mine Likely

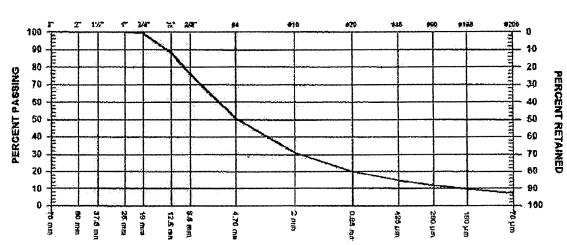
Stage 6

CONTRACTOR

DATE RECEIVED 2008.Oct.03 DATE TESTED 2008.Oct.07 DATE SAMPLED 2008.Sep.27 SIEVE TEST NO. 34

SUPPLIER SOURCE

R-S6-ZF-40/08


SAMPLED BY CLIENT DJ

TESTED BY

TEST METHOD WASHED

SPECIFICATION

MATERIAL TYPE Filter

GRAV	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm	100.0 99.2 88.3	

SAND) SIZES	AND FINE	ES	PERCENT PASSING	GRADATION LIMITS
No. 2 No. 4 No. 6 No. 5	4 10 20 40 60 100	4.75 2.00 850 425 250 150	mm mm	50.8 30.9 20.1 14.8 11.7 9.7 7.4	

LOCATION: PE, CHAINAGE: 30+00m, ELEVATION: 953.5m

Page 1 of 1

2008.Oct.14

1301 Kelliher Road Prince George, BC Phone (250)584-4304; fax (250)564-9523

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

C.C. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOI. -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

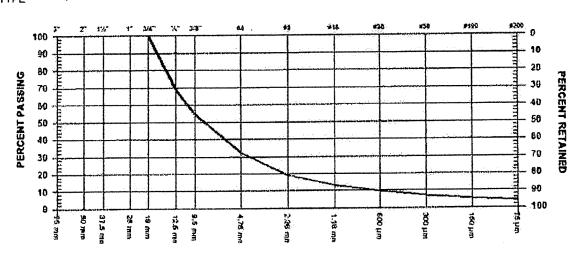
Likely

CONTRACTOR

DATE RECEIVED 2008. Nov. 03 DATE TESTED 2008. Nov. 07 DATE SAMPLED 2008. Oct. 29 SIEVETEST NO. 19

SUPPLIER

R-S6-ZF-55/08 SOURCE


Clical SAMPLED BY

DJ **TESTED BY**

SPECIFICATION

MATERIAL TYPE In Situ Filter

TEST METHOD WASHED

GRAVE	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 69.0 54.6	

SAN	ID SIZE	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	4 8 16 30 50 100 200	4.75 mm 2.36 mm 1.18 mm 600 µm 300 µm 150 µm 75 µm	32.3 19.3 13.0 9.6 7.3 5.5 4.1	

COMMENTS

LOCATION: PE, CHAINAGE: 46+00, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12

Mov. 13. ZUUN 4:31AM Geonorth Engineering 304 9323

1301 Kelliher Road Prince George, BC *** \ L5S8 Phone (250)564-4304; fax (250)564-2-23

SIEVE AND DULTSIS TO 14/10 8 16 30 50 SERIES

PROJECT NO. K 2585

CLIENT Mount Pollcy Mining Corp. Attn:

Client

DJ

c.c. Knight Piesold Consulting

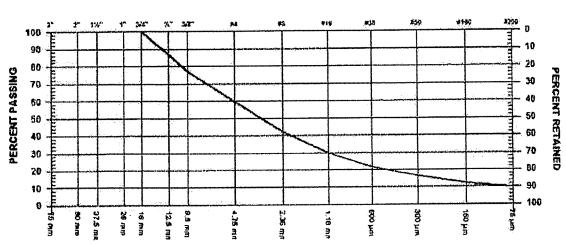
Mount Polley Mine

TO Mount Polley Mining Corp. ALLn: Knight Picsold P.O Box 12 Likely, BC AOT -INO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Likely


Stage 6

CONTRACTOR

DATE RECEIVED 2008. Nov. 03 DATE TESTED 2008. Nov. 07 DATE SAMPLED 2008. Oct. 27 SIEVETEST NO. 50

SAMPLED BY SUPPLIER R-S6-ZF-56/08 **TESTED BY** SOURCE TEST METHOD WASHED **SPECIFICATION**

MATERIAL TYPE In Situ Filter

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	100.0 86.8 77.2	

SAND SIZES	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4	4.75 mm	59.6	
No. 8	2.36 mm	42.2	
No. 16	1.18 mm	30.0	
No. 30	600 μm	21.7	
No. 50	300 μm	16.4	
No. 100	150 μm	12.5	
No. 200	75 μm	9.8	

COMMENTS

Page 1 of 1

LOCATION: PE, CHAINAGE: 44+50, ELEVATION: 954.1

2008.Nov.12 GeoNorth Engineering Ltd.

Phone (250)564-4304; fax (250)564-5-23

PROJECTNO, K 2585

CLIENT Mount Polley Mining Corp. Attn: C.C. Knight Piesold Consulting

Mount Polley Mining Corp. Attn:

Knight Piesold P.O Box 12 Likely, BC

VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

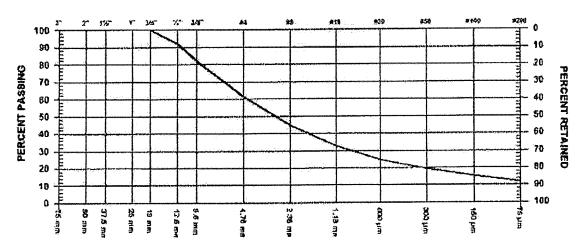
CONTRACTOR

TO

DATE RECEIVED 2008. Nov. 03 DATE TESTED 2008. Nov. 07 DATE SAMPLED 2008. Oct. 27 SIEVETEST NO. 51

SUPPLIER

SOURCE


R-S6-ZE-57/08

Client SAMPLED BY DJ

TESTED BY TEST METHOD WASHED

SPECIFICATION

MATERIAL TYPE In Situ Filter

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm mm mm mm	100.0 92.0 82.3	

SAND SIZES AND FINES			ES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	8 16 30	4.75 2.36 1.18 600 300 150 75		61.3 44.5 32.9 24.9 19.5 15.3	

COMMENTS

LOCATION: PE, CHAINAGE: 42:50, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12

GeoNorth Engineering Ltd.

Seonorn Engineering Ltd. Geonorth Engineering 304 9323

1301 Kelliher Road Prince George, BC 1 14588 Phone (250)564-4304; fax (250)564-2-23

SIEVE AND COULTS IS THE TOTAL 8 16 30 50 SERIES

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Picsold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

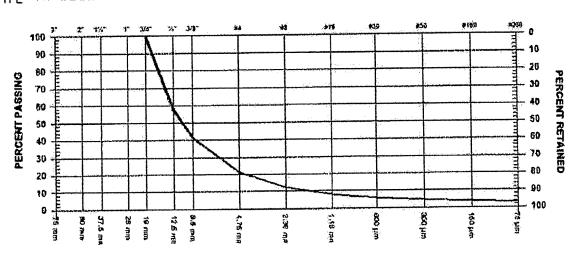
Mount Polley Mine

Trikely

CONTRACTOR

DATE RECEIVED 2008. Nov. 03 DATE TESTED 2008. Nov. 07 DATE SAMPLED 2008. Oct. 27 SIEVE TEST NO. 52

SUPPLIER SOURCE


R-S6-ZF-58/08

Client SAMPLED BY IJĴ **TESTED BY**

SPECIFICATION

MATERIAL TYPE In Situ Filler

TEST METHOD WASHED

GRAVE	GRAVEL SIZES			GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	ww w m	100.0 57.5 41.5	

SAND SIZES	AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4	4.75 mm	21.4	
No. 8	2.36 nm	12.2	
No. 16	1.18 mm	8.0	
No. 30	600 µm	6.0	
No. 50	300 µm	4.8	
No. 100	150 µm	3.8	
No. 200	75 µm	3.1	

COMMENTS

LOCATION: PE, CHAINAGE: 41+00, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12

GeoNorth Engineering Ltd.

APPENDIX A5

ZONÉ T RECORD

(Pages A5-1 to A5-18)

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

C.C. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold

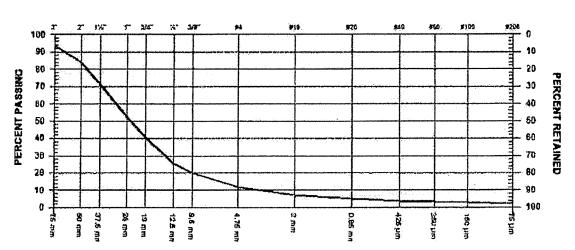
P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

Mount Pollcy Mine


Likely

CONTRACTOR

SIEVE TEST NO. 17 DATE RECEIVED 2008. Sep. 29 DATE TESTED 2008. Sep. 30 DATE SAMPLED 2008. Sep. 04

Clicat SUPPLIER SAMPLED BY R-S6-ZT-15/08 DJ TESTED BY SOURCE TEST METHOD WASHED SPECIFICATION

MATERIAL TYPE Transilion

GRAV	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 num 12.5 mm 9.5 mm	93.5 83.7 71.3 52.2 40.3 25.6 20.1	

SAND SIZES AND FINES			ES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.		4.75 2.00 850 425 250 150	hw hw	11.8 7.2 5.1 4.0 3.3 2.8 2.1	

COMMENTS

100% PASSING THE 4"

LOCATION: ME, CHAINAGE: 18+00, ELEVATION: 952.0

2008.Oct.07 2age 1 of 1 GeoNorth Engineering Ltd.

A5-1

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

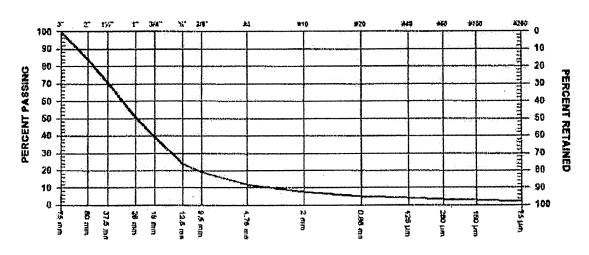
CONTRACTOR

DATE RECEIVED 2008. Sep. 29 DATE TESTED 2008. Scp. 30 DATE SAMPLED 2008. Sep. 04 SIEVE TEST NO. 18

SUPPLIER

SOURCE

R-S6-ZT-16/08


SAMPLED BY **TESTED BY**

Client DJ

SPECIFICATION

MATERIAL TYPE Transition

TEST METHOD WASHED

GRAVI	GRAVEL SIZES			GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm mm mm	100.0 83.9 70.6 50.5 39.2 24.0 19.0	

SAND SIZES AND FINES			ES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	4 10 20 40 60 100 200	4.75 2.00 850 425 250 150 75	hw hw hw ww	11.8 7.5 5.3 4.1 3.4 2.8 2.2	

COMMENTS

LOCATION: ME, CHAINAGE: 16+00, FLEVATION: 952.0

Page 1 of 1

2008.Oct.07

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

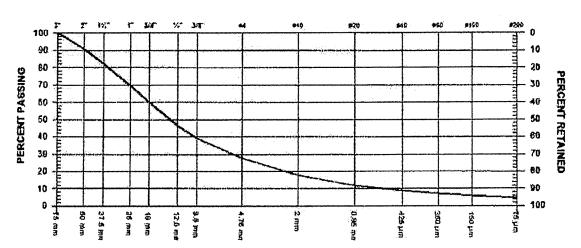
C.C. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -INO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Minc


Likely

CONTRACTOR

DATE RECEIVED 2008. Sep. 29 DATE TESTED 2008. Sep. 30 DATE SAMPLED 2008. Sep. 17 SIEVE TEST NO. 19

Client SUPPLIER SAMPLED BY R-S6-ZT-17/08 DJ SOURCE TESTED BY TEST METHOD WASHED SPECIFICATION

MATERIAL TYPE "One T

GRAV	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 90.9 82.3 69.3 60.1 46.4 39.1	

SAN	SAND SIZES AND FINES			PERCENT PASSING	GRADATION LIMITS
	4 10 20 40 60 100 200	4.75 2.00 850 425 250 150	wrd wrd ww	27.8 17.7 11.8 8.8 7.2 6.1 4.9	

LOCATION: SE, CHAINAGE: 07+80, ELEVATION: 952.3

∮age l of l 2008.Oct.07

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)56/

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Pollcy Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martol @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

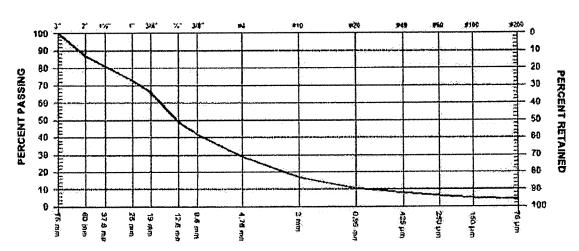
Mount Polley Mine

Likely

CONTRACTOR

DATE RECEIVED 2008. Sep. 29 DATE TESTED 2008. Sep. 30 DATE SAMPLED 2008. Sep. 23 SIEVE TEST NO. 20

SUPPLIER


SOURCE

R-S6-2T-18/08

SPECIFICATION

MATERIAL TYPE Transition

Client SAMPLED BY DJ **TESTED BY** TEST METHOD WASHED

GRAVE	GRAVEL SIZES			GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	min mm	100.0 87.0 80.9 72.9 65.9 49.0	

SAND SIZES AND FINES			ES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	10	4.75 2.00 850 425 250 150 75	hm ww	29.0 17.2 10.7 7.9 6.4 5.3 4.3	·

COMMENTS

LOCATION: ME, CHAINAGE: 24+50, ELEVATION: 954.0

Page 1 of 1

2008.Oct.07

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: C.C. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12

Trikely, BC AOT -INO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

hikely

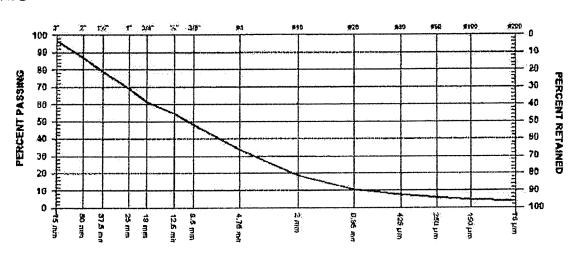
CONTRACTOR

TO

DATE RECEIVED 2008. Sep. 29 DATE TESTED 2008. Sep. 30 DATE SAMPLED 2008. Sep. 23 SIEVE TEST NO. 21

SUPPLIER

R-S6-ZT-19/08 **SOURCE**


SAMPLED BY **TESTED BY**

Client

SPECIFICATION

MATERIAL TYPE Transition

DJ TEST METHOD WASHED

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm nun	96.5 86.7 78.9 68.9 61.4 54.5 48.0	

SAND SIZES AND FINES			S	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	4 10 20 40 60 100 200	4.75 2.00 850 425 250 150	mt mrd mrd mm mm mm	33.5 18.9 10.8 7.5 5.9 4.8 3.7	

COMMENTS

100% PASSING THE 4"

LOCATION: ME, CHAINAGE: 26+00, ELEVATION: 954.0

Page 1 of 1

2008.Oct.07

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

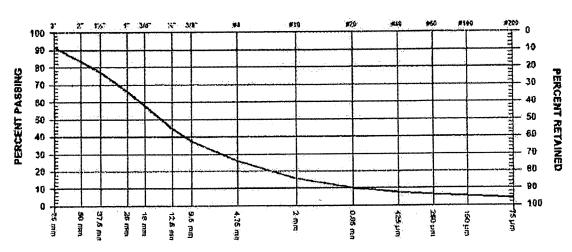
Likely

CONTRACTOR

VOI. -INO

DATE RECEIVED 2008. Sep. 29 DATE TESTED 2008. Sep. 30 DATE SAMPLED 2008. Sep. 24 SIEVE TEST NO. 22

SUPPLIER


SOURCE

R-S6-ZT-20/08

SPECIFICATION

MATERIAL TYPE Transition

Client SAMPLED BY DJ**TESTED BY** TEST METHOD WASHED

GRAV	EL SIZES	PERCENT PASSING	GRADATION LIMITS
	75 mm 50 nm 37.5 mm 25 mm 19 nn 12.5 mm 9.5 mm	91.5 83.5 76.9 66.2 57.8 44.6 37.5	

SAN	ID SIZES	AND FINES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No. No.	20 40 60	4.75 mm 2.00 mm 850 μm 425 μm 250 μm 150 μm	25.8 15.9 10.4 7.8 6.4 5.4 4.3	

COMMENTS

100% PASSING THE 5", 91.5% PASSING THE 4" (NO RETAINS ON THE 3")

LOCATION: ME, CHAINAGE 26:00, ELEVATION: 954.0

Page 1 of 1

2008.Oct.07

GeoNorth Engineering Ltd.

PER

1301 Kelliher Road Prince George, BC Phone (250)564-4304; fax (250)564-9323

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

CLIENT

C.C. Knight Piesold Consulting

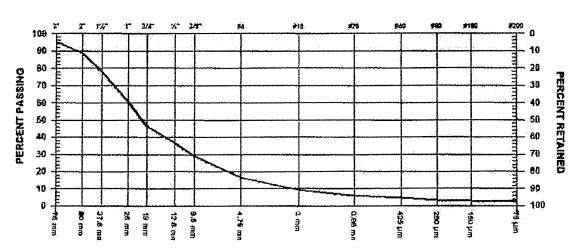
Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine Likely

CONTRACTOR


SIEVE TEST NO. 37 DATE RECEIVED 2008.Oct.03 DATE TESTED 2008.Oct.08 DATE SAMPLED 2008.Sep.26

SUPPLIER SOURCE

SAMPLED BY R-S6-ZT-21/08 EMTESTED BY TEST METHOD WASHED

SPECIFICATION

MATERIAL TYPE Transition

GRAVI	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3"	75 mm	95.5	
2"	50 mm	88.4	
1 1/2"	37.5 mm	77.7	
1"	25 mm	60.5	
3/4"	19 mm	46.2	
1/2"	12.5 mm	36.4	
3/8"	9.5 mm	29.0	

SAND SIZES AND FINES				PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	4 10 20 40 60 100 200	4.75 2.00 850 425 250 150	mm mm	16.7 9.5 6.0 4.5 3.6 3.1 2.5	

COMMENTS

100% PASSING THE 4"

LOCATION: ME, CHAINAGE: 19+50m, ELEVATION: 954.0m

Page 1 of 1

2008.Oct.14

SIEVE ANDLISIS PLECT 8 16 30 50 SERIES

1301 Kelliher Road Prince George, BC 1358 Phone (250)564-4304; fax (250)564-5-23

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

C.C. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Pollcy Mine

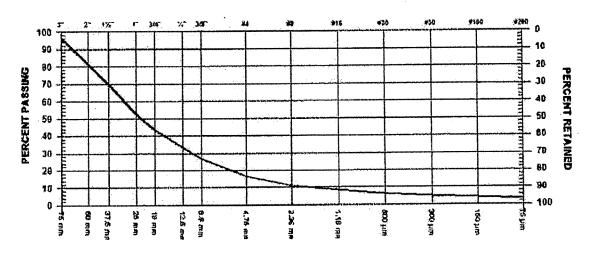
Likely

CONTRACTOR

DATE RECEIVED 2008. Nov. 03 DATE TESTED 2008. Nov. 06 DATE SAMPLED 2008. Oct. 27 SIEVE TEST NO. 38

SUPPLIER

R-\$6-XT-22/08 SOURCE


Clical SAMPLED BY

DJ TESTED BY

SPECIFICATION

MATERIAL TYPE In Situ Transition

TEST METHOD WASHED

GRAV	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	96.1 81.3 70.0 52.4 43.5 33.3 27.0	

SAND SIZES AND FINES			PERCENT PASSING	GRADATION LIMITS
1	6 1.18 0 600	mt mt mm mm	16.8 11.2 8.5 6.6 5.3 4.1 3.2	

COMMENTS

100% PASSING THE 4"

LOCATION: PE, CHAINAGE: 46+00, ELEVATION: 953.5

Page 1 of 1

2008.Nov.12

NOV. 13. ZUUB 3: ZYAM GEONORTH ENSINEERINE DD4 9323

1301 Kelliher Road Prince George, BC 1358 Phone (250)564-4304; fax (250)564-5-∠3

SIEVE AND DULTUS FILE OF THE 8 16 30 50 SERIES

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Altn: Knight Piesold P.O Box 12 Likely, BC VOI: -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Stage 6

CONTRACTOR

Mount Polley Mine

Likcly

DATE RECEIVED 2008. Nov. 03 DATE TESTED 2008. Nov. 06 DATE SAMPLED 2008. Oct. 27 SIEVE TEST NO. 39

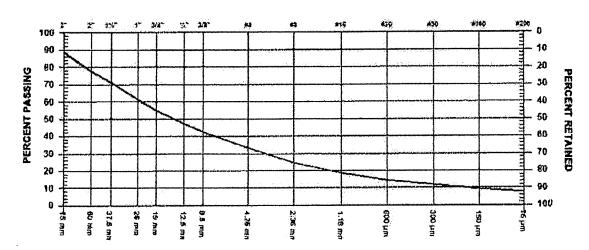
SUPPLIER

SOURCE

SPECIFICATION

R-S6-ZT-23/08

Client


TESTED BY

SAMPLED BY

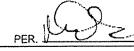
DJ

TEST METHOD WASHED

MATERIAL TYPE In Situ Transition

GRAVEL SIZES			PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm mm mm	88.7 77.5 71.0 61.1 55.0 47.4 42.7	

SAND SIZES AND FINES			ES	PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	4 8 16 30 50 100 200	4.75 2.36 1.18 600 300 150 75	mm	33.1 24.6 18.6 14.5 11.7 9.4 7.6	


COMMENTS

100% PASSING THE 5" 93.1% PASSING THE 4"

LOCATION: PE, CHAINAGE: 42+50, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12

Nov. 13. ZUUR 9: ZYAM Geonorth Engineering 564 9323 Geonorth Engineering Ltu.

1301 Kelliher Road Prince George, BC ~ L5S8 Phone (250)564-4304; fax (250)564-5-23

SIEVE ANDLISIS P. 4/10RT 8 16 30 50 SERIES

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Picsold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Pollcy Construction Program Stage 6

Mount Polley Mine

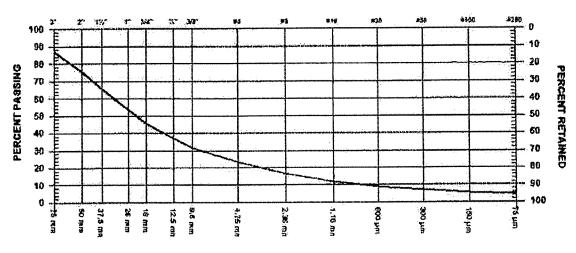
Likely

CONTRACTOR

DATE RECEIVED 2008. Nov. 03 DATE TESTED 2008. Nov. 06 DATE SAMPLED 2008. Oct. 29 SIEVETEST NO. 40

SUPPLIER SOURCE

R-S6-ZT-24/08


SAMPLED BY **TESTED BY**

Client DJ

SPECIFICATION

MATERIAL TYPE (n Situ Transilion

TEST METHOD WASHED

GRAV	GRAVEL SIZES			GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm mm mm	86.8 75.2 65.4 53.7 45.5 37.0 31.6	

SAND SIZES AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4 4.75 mm No. 8 2.36 mm No. 16 1.18 mm No. 30 600 μm No. 50 300 μm No. 100 150 μm No. 200 75 μm	23.5 16.6 12.1 9.1 7.1 5.6 4.5	

COMMENTS

100% PASSING THE 5" 93.6% PASSING THE 4"

LOCATION: PH, CHAINAGE: 6+00, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12

1301 Kelliher Road Prince George, BC * *.558 Phone (250)564-4304; fax (250)564-5-∠3

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

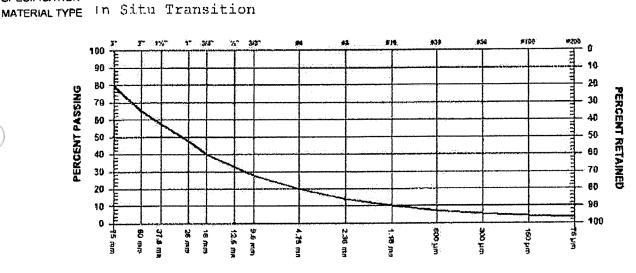
Mount Polley Mine

Likely

SAMPLED BY

CONTRACTOR

DATE RECEIVED 2008.Nov.03 DATE TESTED 2008.Nov.06 DATE SAMPLED 2008.Oct.29 SIEVE TEST NO. 41


SUPPLIER SOURCE

R-S6-ZT-25/08

Client 1).)

SPECIFICATION

TESTED BY TEST METHOD WASHED

GRAVE	EL SIZES		PERCENT PASSING	GRADATIÓN LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	79.2 65.1 57.5 47.6 40.0 32.6 27.8	

SAND SIZES AND FINES			S	PERCENT PASSING	GRADATION LIMITS
No. No. No. No.	16 30	4.75 2.36 1.18 600 300 150 75		20.1 14.1 10.2 7.4 5.6 4.3 3.3	

COMMENTS

100% PASSING THE 5" 92.5% PASSING THE 4"

LOCATION: SE, CHAINAGE: 8+50, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12 GeoNorth Engineering Ltd.

Geomoria Engineering 304 3323

Secretar Engineering Ltd.

1301 Kelliher Road Prince George, BC 171.5S8 Phone (250)564-4304; fax (250)564-5-23

SIEVE ANDLISIS TOUTONT 8 16 30 50 SERIES

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1N0

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

hikely

CONTRACTOR

DATE RECEIVED 2008.Nov.03 DATE TESTED 2008.Nov.06 DATE SAMPLED 2008.Oct.29 SIEVE TEST NO. 42

SUPPLIER

SOURCE

R-S6-ZT-26/08

Client SAMPLED BY

TESTED BY

DJTEST METHOD WASHED

8

8

6

SPECIFICATION

MATERIAL TYPE In Situ Transition

O.

200 2/4 100 10 90 20 80 PERCENT PASSING 30 70 60 50 50 RETAINED 60 40 70 30 88 20 ~ 90 10

GRAV	GRAVEL SIZES			GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	unu mm	87.1 76.7 68.8 54.7 46.6 32.0 26.2	

HIN G LE

19 西田

8.8

SAND SIZES AND FINES			PERCENT PASSING	GRADATION LIMITS
No. 3 No. 5 No. 1			16.3 10.2 7.2 5.6 4.5 3.6 2.9	

É

100

COMMENTS

100% PASSING THE 5" 94.5% PASSING THE 4"

LOCATION: sc, CHAINAGE: 13+00, HEEVATION: 954.0

Page 1 of 1

2008.Nov.12

1301 Kelliher Road Prince George, BC 11.558

Phone (250)564-4304; fax (250)564-6-23

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -INO

ATTN: Ron Martel @ 250-790-2268

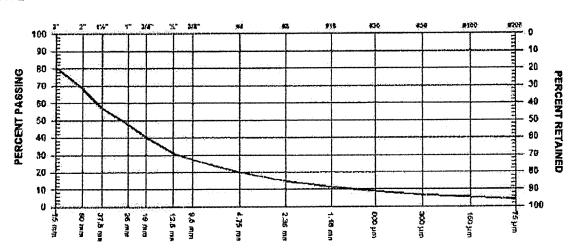
PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

CONTRACTOR

DATE RECEIVED 2008. Nov. 03 DATE TESTED 2008. Nov. 06 DATE SAMPLED 2008. Oct. 29 SIEVE TEST NO. 43


SUPPLIER

R-S6-ZT-27/08 SOURCE

Client SAMPLED BY D(I **TESTED BY** TEST METHOD WASHED

SPECIFICATION

MATERIAL TYPE In Situ Transition

GRAVE	GRAVEL SIZES			GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm min min mm	80.6 68.5 57.2 47.8 40.5 31.3 27.4	

No. 4 4.75 mm 20.2 No. 8 2.36 mm 15.1 No. 16 1.18 mm 11.5 No. 30 600 μm 8.8 No. 50 300 μm 6.9 No. 100 150 μm 5.4 No. 200 75 μm 4.3	SAND SIZES AND FINES				PERCENT PASSING	GRADATION LIMITS
	No. No. No. No.	8 16 30 50 100	2.36 1.18 600 300	hw hw hw ww	15.1 11.5 8.8 6.9 5.4	

COMMENTS

100% PASSING THE 4"

LOCATION: ME, CHAINAGE: 16+00, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12

GeoNorth Engineering Ltd.

PER

NUT-10. 2000 F3.30MM DEUNOTER ERETRE JOH 3020

SIEVE ANALIBIS NEW LIST 8 16 30 50 SERIES

1301 Kelliher Road Prince George, BC "L5S8 Phone (250)564-4304; fax (250)564-__23

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Atta:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTM: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program

Mount Polley Mine

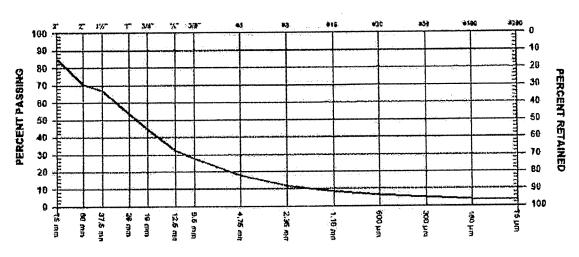
Likely

CONTRACTOR

Stage 6

DATE RECEIVED 2008.Nov.03 DATE TESTED 2008.Nov.07 DATE SAMPLED 2008.Oct.29 SIEVE TEST NO. 44

SUPPLIER


SOURCE

R-S6-ZT-28/08

SPECIFICATION

MATERIAL TYPE In Situ Transilion

Client SAMPLED BY $D_{i}T_{i}$ **TESTED BY** TEST METHOD WASHED

GRAVI	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm	85.2 70.5 67.0 53.5 44.8 32.5 27.5	

SAI	SAND SIZES AND FINES			PERCENT PASSING	GRADATION LIMITS
No. No. No. No. No.	4 8 16 30 50 100 200	4.75 2.36 1.18 600 300 150 75	hw hw hw ww	17.7 12.0 8.5 6.4 5.1 4.0 3.2	

COMMENTS

100% PASSING THE 5" 89.4% PASSING THE 4"

LOCATION: ME, CHAINAGE: 22:00, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12

1301 Kelliher Road Prince George, BC 11.558
Phone (250)564-4304; fax (250)564-5-23

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12

Wikely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine Likely

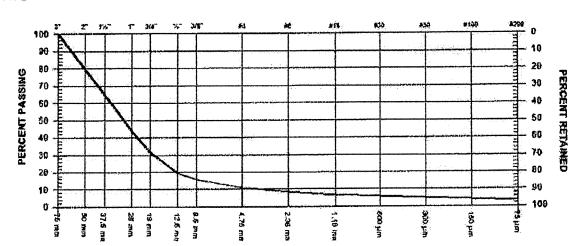
CONTRACTOR

O

SIEVE TEST NO. 45 DATE RECEIVED 2008. Nov. 03 DATE TESTED 2008. Nov. 07 DATE SAMPLED 2008. Oct. 29

SUPPLIER

SOURCE


R-S6-ZT-29/08

SAMPLED BY Client TESTED BY DJ

SPECIFICATION

MATERIAL TYPE In Situ Transition

TEST METHOD WASHED

GRAVI	EL SIZES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 79.7 64.9 43.7 31.4 19.6 15.7	

SAND SIZES AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4 4.75 mm No. 8 · 2.36 mm No. 16 1.18 mm No. 30 600 μm No. 50 300 μm No. 100 150 μm No. 200 75 μm	11.2 8.6 7.0 6.0 5.1 4.2 3.5	

COMMENTS

LOCATION: PE, CHAINAGE: 30:00, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12

GeoNorth Engineering Ltd.

PER. HOLE

MOY-13. 2000 3.30AM GEOROTTH CHETTHE 304 3323

1301 Kelliher Road Prince George, BC ***3L5S8 Phone (250)564-4304; fax (250)564-23

SIEVE ANALIBIS ILLIVINT 8 16 30 50 SERIES

PROJECTNO, K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Altn: Knight Picsold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Pollcy Construction Program

Mount Polley Mine

Likely

CONTRACTOR

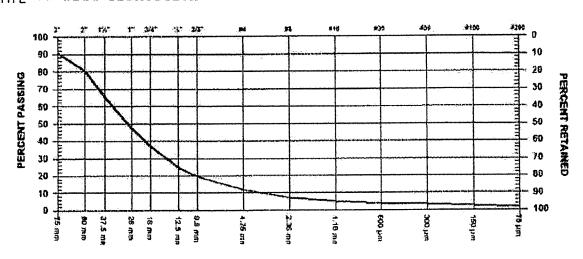
Stage 6

DATE RECEIVED 2008.Nov.03 DATE TESTED 2008.Nov.07 DATE SAMPLED 2008.Oct.29 SIEVE TEST NO. 46

SUPPLIER

SOURCE

R-S6-ZT-30/08


Client SAMPLED BY

DJ

SPECIFICATION

MATERIAL TYPE In Situ Transition

TESTED BY TEST METHOD WASHED

GRAVI	EL SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm	90.7 80.6 65.6 47.1 37.1 24.8 19.5	

SAND SIZES AND FINES	
)N
No. 16 1.18 mm 5.2 No. 30 600 μm 4.0 No. 50 300 μm 3.2 No. 100 150 μm 2.4	
No. 200 75 jam 1.8	

COMMENTS

100% PASSING THE 5" 93.7% PASSING THE 4"

LOCATION: PH, CHAINAGE: 33+00, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12

GeoNorth Engineering Ltd.

1301 Kelliher Road Prince George, BC `L538 Phone (250)564-4304; fax (250)564-6323

PROJECTNO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

C.C. Knight Piesold Consulting

O Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

Mount Polley Mine

Likely

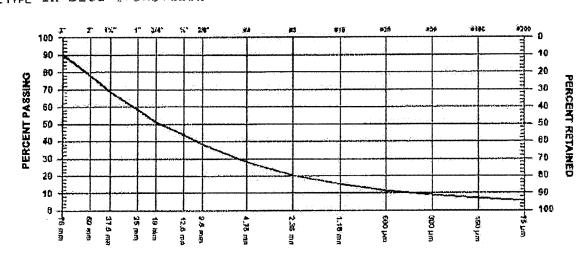
CONTRACTOR

DATE RECEIVED 2008.Nov.03 DATE TESTED 2008.Nov.07 DATE SAMPLED 2008.Oct.29 SIEVE TEST NO. 47

SUPPLIER

SOURCE

R-S6-ZT-31/08


SAMPLED BY **TESTED BY**

Client. DJ

SPECIFICATION

MATERIAL TYPE In Situ Transition

TEST METHOD WASHED

GRAVI	EL SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm mm mm mm mm	90.2 77.8 68.5 58.5 51.3 43.7 38.2	

SAND SIZES	S AND FINES	PERCENT PASSING	GRADATION LIMITS
No. 4	4.75 mm	28.1	
No. 8	2.36 mm	20.6	
No. 16	1.18 mm	15.3	
No. 30	600 μm	11.6	
No. 50	300 μm	9.0	
No. 100	150 μm	7.1	
No. 200	75 μm	5./	

COMMENTS

100% PASSING THE 4"

LOCATION: PE, CHAINAGE: 36+00, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12

GooNorth Engineering Ltd.

BONOTTO Engineering Ltd. beonorth Engineering od4 33/3

1301 Kelliher Road Prince George, BC `L5S8 Phone (250)564-4304; fax (250)564-223

SIEVE ANALISIS TILIVIOL 8 16 30 50 SERIES

PROJECT NO. K 2585

CLIENT Mount Polley Mining Corp. Attn:

c.c. Knight Piesold Consulting

TO Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12 Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT Mount Polley Construction Program Stage 6

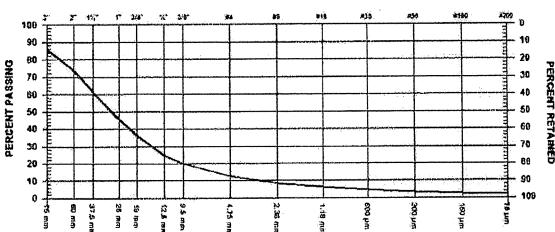
Mount Polley Mine

Likely

CONTRACTOR

DATE RECEIVED 2008. Nov. 03 DATE TESTED 2008. Nov. 07 DATE SAMPLED 2008. Oct. 29 SIEVE TEST NO. 48

SUPPLIER


R-S6-ZT-32/08 SOURCE

Client SAMPLED BY

DJ **TESTED BY** TEST METHOD WASHED

SPECIFICATION

MATERIAL TYPE In Situ Transition

GRAV	EL SIZES		PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 50 37.5 25 19 12.5 9.5	mm nin	85.7 73.7 61.2 45.5 36.2 24.6 20.2	

SAN	ND SIZE	S AND FINE	S	PERCENT PASSING	GRADATION LIMITS
No. No. No. No.	4 8 16 30 50	1.75 2.36 1.18 600 300 150	hw hw hw ww	12.9 8.6 6.2 4.6 3.5 2.7	
No.	200	7.5	11m	2.1	

COMMENTS

100% PASSING THE 5" 93.5% PASSING THE 4"

LOCATION: PE, CHAINAGE: 39+00, ELEVATION: 954.0

Page 1 of 1

2008.Nov.12

GeoNorth Engineering Ltd.

PER.

APPENDIX A6

SOUTH EMBANKMENT CONCRETE ENCASEMENT CONCRETE STRENGTH TEST RESULTS

(Pages A6-1 to A6-2)

PROJECT NO. K 2036

CLIENT Mount Polley Mining Corp. Attn: C.C. Knight Piesold Consulting

Mount Polley Mining Corp. Attn: Knight Piesold P.O Box 12

Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT M.P. Construction Program Stage 4/5

Mount Polley Mining Corp. Likely

Materials Testing Likel

SET NO: 4 NO. OF SPECIMENS 4 DATE RECEIVED 2007.Oct.11 DATE CAST 2007.Oct.03

***************************************	SPECIMEN NUMBER	DATE TESTED	AGE AT TEST (DAYS)	AVERAGE DIAMETER (mm) OR SIDE (mm x mm)	AVERAGE LENGTH OR SPAN (mm)	MAXIMUM LOAD (kN)	CROSS-S AF	RAGE ECTIONAL EA m²)	COMPRESSIV OR FLEXURAI STRENGTH (MPa)	_ FAI	LURE YPE	
	Α	Oct,12	9	102.0	204.0	245	8	171	30.0		Α	X
	, B	Oct.17	14	102.0	204.0	314	. 8	171	38.4		В	
-	Ċ	Oct.31	28	102.0	204.0	353	8	171	43.2		С	
	D :	Oct.31	28	102.0	204.0	373	8	171	45.6		D	
er l												
ĺ											F	
	SPECIFIE	D STRENGTH	30) MPa@ 28 DAYS	CONCRETE TEMP	ERATURE	°c	AIR TEMP	PERATURE			°C
***************************************	CEMENT	CONTENT		kg/m³ TYPE 50	MEASURED SLUM	P	mm	SPECIFIE	ED SLUMP	±	n	nm
	POZZOLA	N CONTENT		kg/m ³ TYPE	MEASURED AIR		%	SPECIFIE	DAIR 6.	. () ±		%
		SIZE AGGRE	GAȚE	20 mm	PLASTIC DENSITY		kg/m ³	HARDEN	ED DENSITY	2450	kg/	m³
	BATCH TII			,, .	CAST TIME			CAST BY	CLIENT	ENT		
	ADMIX (O)	KES :			CURING CONDITIO	DNS			MOULD TYPE E	LAST	c	
		•			INITIAL CURING TE	EMP:MAXIMU	M	°C	MINIMUM	- °(3	
	• *				LOCATION							
	SUPPLIEF	₹			South Embar		Toe Dr	ain -	2nd Pour			
	MIX NO.	30MPA-	-2 OMM		R-36-CON-S	E2/0/						
	TRUCK N	•	TICKET	NO.	COMMENTS SPECIMENS	WERE CA	ST BY	CLIENT	1			
	LOAD VOI		m³ CUM	LVQL. m ³	•			\sim	,			
	WATER A	DDED	I AUT	H. BY				\mathcal{A}				
Silver 18	3	l of 1		2007.Nov.01	GeoNorth Engineeri	пg Ltd.	Р	ER.		7-111-PARK 1-PARKET BAG - 8-Au		
-	:											

No.8575 P. 1/2

CONCRETE TEST REPORT

1301 Kelliher Road Prince George, BC V2L5S8 Phone (250)564-4304; fax (250)564-9323

PROJECTNO. K 2036

CLIENT Mount Polley Mining Corp. Attn: c.c. Knight Piesold Consulting

Mount Polley Mining Corp. Attn:
Knight Piesold
P.O Box 12

Likely, BC VOL -1NO

ATTN: Ron Martel @ 250-790-2268

PROJECT M.P. Construction Program Stage 4/5
Materials Testing

Mount Polley Mining Corp.

Likely

SET NO. 3 NO. OF SPECIMENS 4

DATE RECEIVED 2007.Sep.27 DATE CAST 2007.Sep.20

OE 1110.	<i>-</i>		· — - · · · · · · · · · · · · · · · · ·			007.00	٠. ۵. ٠	271.20/10/ 20	0 / . 50	.p. 20
SPECIMEN NUMBER	DATE TESTED	AGE AT TEST (DAYS)	AVERAGE DIAMETER (mm) OR SIDE (mm x mm)	AVERAGE LENGTH OR SPAN (mm)	MAXIMUM LOAD (kN)	CROSS-SI AR	RAGE ECTIONAL EA m²)	COMPRESSIVE OR FLEXURAL STRENGTH (MPa)	FAI	LURE YPE
A	Sep.28	8	102.0	204.0	215	8	171	26.3		А
В	Oct.04	14	102.0	204.0	270	8	171	33.0		В
С	Oct.18	28	102.0	204.0	296	8	171	36.2		c \
D	Oct.18	28	102.0	204.0	318	8	171	38.9		D
				·						E
										F
SPECIFIE	D STRENGTH	1 31) MPa@ 28 DAYS	CONCRETE TEMP	ERATURE	°C	AIR TEM	PERATURE		۴۵
CEMENT	CONTENT		kg/m³ TYPE 50	MEASURED SLUM	IF	mm	SPECIFIE	ED SLUMP	±	mn
POZZOLA	N CONTENT		kg/m³ TYPE	MEASURED AIR		%	SPECIFIE	ED AIR 6.	0 ±	9/
MAXIMUN	I SIZE AGGRI	EGATE	20 mm	PLASTIC DENSITY	<i>(</i>	kg/m³	HARDEN	ED DENSITY	2429	kg/mi
BATCH TI				CAST TIME			CAST BY	CLIENT		
WRDA	+ AEA			CURING CONDITIONS MOULD TYPE PLASTIC				ic		
GLENI	UM		125ml 500ml	INITIAL CURING T	EMP:MAXIML	JM	°C	MINIMUM	°(3
DHHVO			O O OME	LOCATION				711111111111111111111111111111111111111		
SUPPLIEF	₹			R-S6-CON-SE1/07						
MIX NO.	30MPA	-20MM								
				COMMENTS						
TRUCK N	0.	TICKET	NQ.	SPECIMENS DAYS AFTER			,ABORA'	TORY FOR (CURIN	Ģ 7
LOAD VO	L.	m³ CUN	M. VOL. m ³	DAIS AFTER	CASI L	MIE.				
WATER A			H. BY				0	e do		
Page	1 of 1		2007.Oct.18	GeoNorth EngAnder	ring Ltd.	F	ER.			

APPENDIX B

NUCLEAR DENSOMETER

Appendix B1 Zone S Record

Appendix B2 Zone U Record

APPENDIX B1

ZONE S RECORD

(Pages B1-1 to B1-14)

#WA Rev'd 4-Dec-08

Kmial	nt Piés	nId	FIEI	LD COMPA	CTION T	ESTS (Me	etric)		PROJECT NO.:		101-01/23
13185S	PE N PON	TIME		NUC	LEAR GA	UGE			DATE:	May to Oc	tober 2008
						I					
TEST NO.	Location	Elevation	Zone	Test	Max. Dry Density	Optimum Moisture	Dry Density	Moisture Content	Compaction	Compaction Specification	Pass or
		(m)		Depth (m)	(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	(%)
1	PE 46+00	951	S	0.2	2094	9.1	2071	9.25	98.9	95.0	Pass
2	PE 45+75	951	S	0.2	2094	9.1	2018	10.19	96.4	95.0	Pass
3	PE 45+25 PE 43+25	951 951,3	S	0.2	2094	9.1	2031 1996	9.58 9.94	97.0 95.3	95.0 95.0	Pass
5	PE 43+25	951.3	S	0.2	2094	9.1 9.1	2004	9.09	95.7	95.0	Pass Pass
6	PE 40+65	951	s	0.2	2094	9.1	2007	10.14	95.8	95.0	Pass
7	PE 39+30	951	s	0.2	2094	9.1	2019	8.23	96.4	95.0	Pass
8	PE 38+75	951	S	0.2	2094	9.1	2087	7.63	99.6	95.0	Pass
9 10	PE 38+25 PE 41+25	951 951.3	S	0.2 0.2	2094 2094	9.1 9.1	2042 2023	8.32 10.08	97.5 96.6	95.0 95.0	Pass Pass
11	PE 41+25	951.3	S	0.2	2094	9.1	2011	10.84	96.0	95.0	Pass
12	PE 41+75	951.3	S	0.2	2094	9.1	2055	9.97	98.1	95,0	Pass
13 14	PE 37+50 PE 37+00	951 951	S S	0.2 0.2	2094 2094	9.1 9.1	2080 2093	7.94 7.27	99.3	95.0 95.0	Pass Pass
15	PE 36+50	951	S	0.2	2094	9.1	2012	9.12	96.1	95.0	Pass
16 17	PE 42+25 DS PE 42+50 DS	951,3 951,3	S	0.2 0.2	2094 2094	9.1 9.1	2053 2050	11,05 8,65	98,0 97,9	95.0 95.0	Pass
18	PE 42+50 DS	951.3	S S	0.2	2094	9.1	2070	8.67	98.8	95.0	Pass Pass
19	PE 42+50 US	951.3	S	0.2	2094	9.1	2009	9.38	95,9	95,0	Pass
20 21	PE 43+00 C PE 43+00 US	951.3 951.3	S	0,2 0,2	2094 2094	9.1 9.1	2051 2064	8.89 9.18	97.9	95.0 95.0	Pass Pass
22	PE 43+25 US	951.3	S	0.2	2094	9.1	2060	8.14	98.4	95.0	Pass
23	PE 43+50 DS	951.3	S	0.2	2094	9.1	2135	8.02	101.9	95.0	Pass
24 25	PE 43+75 C PE 44+25 US	951.3 951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2092 2045	7.70 8.16	99.9 97.6	95.0 95.0	Pass Pass
26	PE 44+75 C	951.3	S	0.2	2094	9.1	2020	7.88	96.4	95,0	Pass
27 28	PE 45+00 DS PE 45+50 US	951.3 951.3	S	0.2 0.2	2094 2094	9.1 9.1	2082 2038	7.92 9.03	99.4	95.0 95.0	Pass Pass
29	PE 45+85 C	951.3	S	0.2	2094	9.1	2073	8.34	99.0	95.0	Pass
30	PE 42+75 US	951.3	S	0.2	2094	9,1	2059	9.78	98.3	95.0	Pass
31 32	PE 42+75 DS PE 42+50 DS	951.3 951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2052 2027	9.94 10.24	98.0 96.8	95.0 95.0	Pass Pass
33	PE 42+50 US	951.3	S	0.2	2094	9,1	2044	10,07	97.6	95.0	Pass
34	PE 40+75 US	951.3	S	0.2	2094	9.1	2019	9.64	96.4	95.0	Pass
35 36	PE 40+10 C PE 40+75 C	951.3 951.3	S	0.2	2094 2094	9.1 9.1	1995 2014	10.29 10.95	95.3 96.2	95.0 95.0	Pass Pass
37	PE 41+25 DS	951.3	S	0.2	2094	9,1	1993	10,43	95.2	95.0	Pass
38 39	PE 41+75 US PE 39+50	951.3 951.3	S	0.2 0.2	2094 2094	9.1 9.1	2022	11.36 11.93	96.5 95.6	95.0 95.0	Pass
40	PE 40+25 C	951.3	S	0.2	2094	9.1	2011	11,04	96,0	95.0	Pass Pass
41	PE 40+50 C	951.3	S	0.2	2094	9.1	2074	10.49	99.0	95.0	Pass
42	PE 41+00 US PE 41+50 C	951.3 951.3	S S	0.2 0.2	2094 2094	9,1 9,1	2034 2072	10.17 10,30	97.1	95.0 95.0	Pass Pass
44	PE 40+00 US	951.3	S	0.2	2094	9.1	2002	11,18	95.6	95.0	Pass
45	PE 39+65 US	951.3	S	0.2	2094	9.1	2049	11.78	97.8	95.0	Pass
46 47	PE 39+10 DS PE 39+10 US	951.3 951.3	S	0.2 0.2	2094 2094	9.1 9.1	1994 2060	11.19 11.65	95.2 98.4	95.0 95.0	Pass Pass
48	PE 39+05 C	951.3	S	0.2	2094	9.1	2041	12.18	97.5	95.0	Pass
49 50	PE 38+65 C PE 38+65 US	951.3 951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2047 2033	10.27 11.31	97.7	95.0 95.0	Pass Pass
51	PE 38+50 C	951.3	S	0.2	2094	9.1	2001	11.14	95.5	95.0	Pass
52	PE 38+35 DS	951.3	S S	0.2	2094	9.1	2026	11.30	96.7	95.0	Pass
53 54	PE 38+00 US PE 37+75 DS	951.3 951.3	S	0.2 0.2	2094 2094	9.1 9.1	2032 2102	10.69 10.26	97.0	95.0 95.0	Pass Pass
55	PE 37+65 C	951.3	S	0.2	2094	9.1	2035	10.90	97.2	95.0	Pass
56 57	PE 39+10 DS	951.3 951.3	S	0.2	2094	9.1	2034	9.79 11.52	97.1	95.0 95.0	Pass Pass
58	PE 39+50 C	951.3	S	0.2	2094	9.1	2057	10.82	98.2	95.0	Pass
59	PE 42+55 DS	951.6	S	0.2	2094	9,1	2026	8.86	96.7	95.0	Pass
60 61	PE 41+95 US PE 41+75 US	951.6 951.6	S S	0.2	2094 2094	9,1 9,1	2059 1997	9.76 9.88	98.3 95.4	95.0 95.0	Pass Pass
62	PE 41+70 DS	951.6	S	0.2	2094	9.1	2087	9.31	99.6	95.0	Pass
63 64	PE 42+30 US PE 36+90 US	951.6 951.3	S S	0.2	2094 2094	9.1 9.1	2013 1999	11.28 8.96	96.1 95.4	95.0 95.0	Pass Pass
65	PE 36+90 US	951.3	S	0.2	2094	9,1	1999	10.02	95.4	95.0 95.0	Pass
66	PE 36+35 C	951.3	S	0.2	2094	9.1	2008	9.68	95.9	95.0	Pass
67 68	PE 36+00 C PE 36+00 DS	951.3 951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2013 2005	9.25 10.43	96.1 95.7	95.0 95.0	Pass Pass
69	PE 36+00 US	951.3	S	0.2	2094	9.1	2034	9.16	97.1	95.0	Pass
70	PE 35+65 US	951.3	S	0.2	2094	9,1	2057	10.02	98.2	95.0	Pass
71 72	PE 35+40 US PE 35+40 DS	951.3 951.3	S S	0.2 0.2	2094 2094	9,1 9,1	2040 1996	9.77 10.59	97.4 95.3	95.0 95.0	Pass Pass
73	PE 35+20 C	951.3	S	0.2	2094	9.1	2022	10.53	96.5	95.0	Pass
74	PE 35+00 US	951.3	S	0.2	2094	9,1	2008	9.60	95.9	95.0	Pass
75 76	PE 34+75 DS PE 34+50 C	951.3 951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2009 2034	11.61 11.41	95.9 97.1	95.0 95.0	Pass Pass
77	PE 34+30 US	951.3	S	0.2	2094	9.1	2037	10.97	97.3	95.0	Pass
78 70	PE 34+05 US	951.3	S	0.2	2094	9.1	2039	8.53	97.4	95.0	Pass
79 80	PE 33+75 US PE 32+50 C	951,3 951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2011 2069	10.16 8.92	96.0 98.8	95.0 95.0	Pass Pass
81	PE 32+25 US	951.3	S	0.2	2094	9.1	1992	10.32	95.1	95.0	Pass
82	ME 26+15 DS	951.0	S	0.2	2094	9,1	2009	10.46	95,9	95.0	Pass
83 84	ME 26+00 C ME 24+50 US	951.0 951.0	S S	0.2 0.2	2094 2094	9,1 9,1	2069 2017	9.21 11.60	98.8 96.3	95.0 95.0	Pass Pass
85	ME 25+00 C	951.3	Š	0.2	2094	9,1	2106	11,40	100.6	95.0	Pass

#N/A Revd 4-Dec-08

/A											Revd 4-Dec-0
Kniol	et Piés	old	FIEL	D COMPA			tric)		PROJECT NO.:		101-01/23
(Mar 200	COMBUL	I I M &		NUCL	EAR GAL	JGE			DATE:	May to Oc	ober 2008
TEST NO.	Location	Elevation	Zone	Test	Max. Dry	Optimum	Dry	Moisture		Compaction	Pass
		(m)	ļ	Depth	Density	Moisture	Density	Content	Compaction	Specification	or
00	ME 36 100 C	951.3	s	(m) 0.2	(kg/m³) 2094	(%) 9.1	(kg/m³) 2009	(%) 10,07	95.9	(%) 95.0	(%) Pass
86 87	ME 26+00 C ME 25+50 C	951.3	S	0.2	2094	9.1	2049	9.29	97.8	95.0	Pass
88	ME 24+50 DS	951.3	S	0.2	2094	9.1	2020	10.55	96.4	95,0	Pass
89	ME 24+15 C	951.0	<u>s</u>	0.2	2094 2094	9.1 9.1	2006 2080	10.72 9.80	95.8 99.3	95.0 95.0	Pass Pass
90 91	ME 26+50 C ME 24+25 C	951.0 951.3	S S	0.2 0.2	2094	9.1	2006	11.07	95.8	95.0	Pass
92	ME 24+00 US	951.3	S	0.2	2094	9.1	2002	10.53	95.6	95.0	Pass
93	ME 23+75 US	951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2056 2096	9.69 9.82	98.2	95.0 95.0	Pass Pass
94 95	ME 23+75 C SE 06+00 C	951.3 951.3	S	0.2	2094	9.1	2049	10.59	97.8	95.0	Pass
96	SE 06+25 US	951,3	S	0.2	2094	9.1	2034	10.56	97.1	95.0	Pass
97	SE 06+50 US	951.3 951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2072 1997	11.01 10.30	98.9 95.4	95.0 95.0	Pass Pass
98 99	SE 06+55 C SE 06+75 DS	951.3	s s	0.2	2094	9.1	2066	10.92	98,6	95.0	Pass
100	SE 07+25 US	951.3	S	0.2	2094	9.1	2244	8.83	107.1	95.0	Pass
101	SE 07+50 US	951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2083 2006	10.11 10.24	99.5 95.8	95.0 95.0	Pass Pass
102 103	SE 07+75 C SE 08+00 US	951.3 951.3	s	0.2	2094	9.1	2093	8.75	99.9	95.0	Pass
104	SE 08+25 DS	951.3	S	0.2	2094	9.1	2012	10.94	96.1	95.0	Pass
105	ME 23+75 C	951.6	S S	0.2 0.2	2094 2094	9.1 9.1	2101 2112	9,65 8,69	100.3 100.8	95.0 95.0	Pass Pass
106 107	ME 24+00 US ME 24+50 DS	951.6 951.6	- S	0.2	2094	9.1	2090	10.00	99.8	95.0	Pass
108	ME 25+00 C	951.6	S	0.2	2094	9.1	2081	7.76	99.4	95.0	Pass
109	ME 25+50 US	951.6	<u>s</u>	0.2	2094	9.1 9.1	2040 2044	9.47 9.59	97.4 97.6	95.0 95.0	Pass Pass
110 111	ME 26+00 DS ME 26+75 C	951.6 951.6	S S	0.2 0.2	2094 2094	9.1	2081	8.51	99.4	95.0	Pass
112	SE 08+25 US	951.3	Š	0.2	2094	9.1	2085	8.95	99.6	95.0	Pass
113	SE 08+50 C	951.3	S	0.2	2094	9.1	2125	8.98	101.5	95.0	Pass
114 115	SE 08+50 DS SE 08+75 US	951.3 951.3	S S	0,2	2094 2094	9.1 9.1	2078 2024	9.47 9.29	99.2 96.6	95.0 95.0	Pass Pass
116	SE 08+80 C	951.3	S	0.2	2094	9.1	2008	10.05	95.9	95,0	Pass
117	SE 09+00 C	951.3	S	0.2	2094	9.1	2102	9.43	100.4	95.0	Pass
118	SE 09+25 US	951.3 951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2044 2121	9,15 9,11	97.6 101.3	95.0 95.0	Pass Pass
119 120	SE 09+50 DS SE 06+00 DS	951.6	S	0.2	2094	9.1	2101	9.18	100,3	95.0	Pass
121	SE 06+50 US	951.6	S	0.2	2094	9.1	2020	8.79	96.4	95.0	Pass
122	SE 07+00 C	951.6	S	0.2	2094	9.1	2069	9.10 9.07	98.8 96.4	95.0 95.0	Pass Pass
123 124	SE 07+50 US SE 08+00 C	951.6 951.6	S S	0,2 0,2	2094 2094	9.1 9.1	2019 2058	9.07	98.3	95.0	Pass
125	SE 08+50 US	951.6	S	0.2	2094	9.1	2023	9.24	96,6	95.0	Pass
126	SE 08+75 C	951.6	S	0.2	2094	9,1	2036	9.51	97.2	95.0 95.0	Pass
127 128	SE 09+00 US SE 08+50 C	951.6 951.6	S	0.2 0.2	2094 2094	9.1 9.1	2003 2015	10.23 9.60	95.6 96.2	95,0	Pass Pass
129	PE 32+00 DS	951.3	S	0.2	2094	9.1	2097	10.33	100.1	95.0	Pass
130	PE 31+75 US	951.3	S	0.2	2094	9.1	2040	10.46	97.4	95.0	Pass
131 132	PE 31+25 C PE 30+75 US	951.3 951.3	S	0.2 0.2	2094 2094	9.1 9.1	2019 2059	8,85 8,80	96.4 98.3	95.0 95.0	Pass Pass
133	PE 30+25 C	951.3	S	0.2	2094	9.1	2048	8.47	97.8	95.0	Pass
134	PE 29+25 C	951.3	S	0.2	2094	9.1	2093	9.89	99.9	95.0	Pass
135 136	PE 28+75 US PE 28+25 C	951.3 951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2006 2052	9.59	95.8 98.0	95.0 95.0	Pass Pass
136	PE 28+00 US	951.3	S	0.2	2094	9.1	2061	10.09	98.4	95.0	Pass
138	ME 27+75 DS	951.3	S	0.2	2094	9.1	2014	9.49	96.2	95.0	Pass
139	ME 27+65 US	951.3 951.3	S	0.2 0.2	2094 2094	9.1 9.1	2018 2107	9.40 9.07	96.4 100.6	95.0 95.0	Pass Pass
140 141	ME 27+30 C ME 27+05 DS	951.3	S	0.2	2094	9,1	2237	7.00	106.8	95.0	Pass
142	ME 27+45 C	951.6	S	0.2	2094	9.1	2100	9.03	100.3	95.0	Pass
143	ME 27+75 US	951.6	S	0.2	2094 2094	9.1 9.1	2025 1997	7.95 8.75	96.7 95.4	95.0 95.0	Pass Pass
144 145	PE 28+75 DS PE 28+50 C	951.6 951.6	S S	0.2 0.2	2094	9.1	2043	9.15	97.5	95.0	Pass
146	ME 23+50 C	951.3	S	0.2	2094	9.1	2037	10.99	97.3	95.0	Pass
147	ME 23+25 US	951.3	S	0.2	2094	9.1	2142	8.96 8.77	102.3	95.0 95.0	Pass Pass
148 149	ME 23+00 DS ME 22+75 US	951.3 951.3	S S	0.2 0.2	2094 2094	9.1 9.1	2094	9.44	98.4	95.0	Pass
150	ME 22+50 C	951.3	S	0.2	2094	9.1	2100	8.78	100.3	95.0	Pass
151	ME 22+25 US	951.3	S	0.2	2094	9.1	2030	9.79	96.9	95.0 95.0	Pass
152 153	ME 22+00 C ME 24+50 C	951.3 951.6	S S	0.2	2094 2094	9.1 9.1	2085 2024	8.57 10.76	99.6 96.6	95.0	Pass Pass
153	PE 32+00 C	951.6	S	0.2	2094	9.1	2049	7.94	97.8	95.0	Pass
155	PE 31+25 US	951.6	S	0.2	2094	9.1	2036	7.53	97.2	95.0	Pass
156	PE 30+50 DS	951.6 951.6	S S	0.2	2094 2094	9.1 9.1	2009	7.99 9.99	95.9 95.9	95.0 95.0	Pass Pass
157 158	PE 29+75 C PE 29+25 US	951.6 951.6	8	0.2	2094	9.1	2022	9.45	96.5	95.0	Pass
159	ME 23+50 C	951.6	S	0.2	2094	9.1	2111	9.07	100.8	95.0	Pass
160	ME 23+25 US	951.6	S	0.2	2094	9,1	2076	9.56	99.1	95.0	Pass
161 162	ME 22+75 C ME 22+50 US	951.6 951.6	S	0.2	2094 2094	9.1 9.1	2052 2092	9.30	98.0 99.9	95.0 95.0	Pass Pass
163	ME 22+30 US ME 22+25 DS	951.6	S	0.2	2094	9.1	2070	9.07	98.8	95.0	Pass
164	ME 22+00 C	951.6	S	0.2	2094	9.1	2030	9.84	96.9	95.0	Pass
165	PE 33+25 C	951.6	S	0.2	2094	9.1	2035	7.29	97.2	95.0	Pass
166 167	PE 33+75 DS PE 34+00 US	951.6 951.6	S	0.2	2094 2094	9.1	2108 2009	7.41 6.83	100.7 95.9	95.0 95.0	Pass Pass
168	PE 34+50 C	951.6	8	0.2	2094	9.1	2082	6.92	99.4	95.0	Pass
169	PE 35+50 DS	951.6	S	0.2	2094	9.1	2063	7.46	98.5	95.0	Pass
170	PE 36+50 C	951.6	S	0.2	2094	9.1	2181	5.41 6.58	104.1 96.6	95.0 95.0	Pass Pass
171	PE 37+25 US PE 37+75 DS	951.6 951.6	S	0.2	2094 2094	9.1	2023 2140	6.28	102.2	95.0	Pass

Kanias	ht Piés	ald	FIE	LD COMPA	CTION T	ESTS (Me	etric)		PROJECT NO.:		101-01/23
INNES!	COMBELL.	TIME		NUC	LEAR GA	UGE			DATE:	May to Oc	tober 2008
					<u> </u>	T		7	7	T	
TEST NO.	Location	Elevation	Zone	Test	Max. Dry	Optimum	Dry	Moisture		Compaction	Pass
		(m)		Depth (m)	Density (kg/m ³)	Moisture (%)	Density (kg/m³)	Content (%)	Compaction (%)	Specification (%)	or (%)
173	PE 38+25 C	951.6	S	0.2	2094	9.1	2116	6.07	101.0	95.0	Pass
174	ME 21+75 C	951.3	S	0.2	2094	9.1	1998	9.09	95,4	95.0	Pass
175	ME 21+50 US	951.3	S	0.2	2094	9.1	2080	9.37	99.3	95.0	Pass
176 177	ME 21+25 DS ME 21+00 US	951.3 951.3	S	0.2	2094 2094	9.1 9.1	2118	9.04	101.1	95,0 95,0	Pass
178	SE 0+600 C	951.9	S	0.2	2094	9.1	2069 2116	9.63 8.27	98.8	95.0	Pass Pass
179	SE 0+650 DS	951.9	S	0.2	2094	9.1	2083	9.27	99.5	95.0	Pass
180	SE 0+700 US	951.9	S	0.2	2094	9.1	2121	9.19	101.3	95.0	Pass
181	SE 0+700 C	951.9	S	0.2	2094	9.1	2129	8.28	101,7	95,0	Pass
182 183	SE 0+750 DS SE 0+800 US	951.9 951.9	S	0.2	2094	9.1 9.1	2160 2068	9.33	103.1 98.7	95.0 95.0	Pass Pass
184	SE 0+850 C	951.9	s	0.2	2094	9.1	2178	8.01	104.0	95.0	Pass
185	SE 0+900 US	951.9	S	0.2	2094	9.1	2063	7.29	98.5	95.0	Pass
186	SE 0+950 US	951.9	S	0.2	2094	9.1	2053	9,31	98.0	95.0	Pass
187 188	ME 2+175 US ME 2+150 C	952.0 952.0	S	0.2	2094	9.1	2087	11.0	99.6	95.0	Pass
189	ME 2+125 US	952.0	S	0.2 0.2	2094 2094	9.1 9.1	2092 2094	10.7	99.9	95.0 95.0	Pass Pass
190	ME 2+100 US	952.0	s	0.2	2094	9.1	2120	9.8	101.2	95.0	Pass
191	ME 2+075 US	951.9	S	0.2	2094	9.1	2003	11.64	95.6	95.0	Pass
192	ME 2+050 US	951.4	S	0.2	2094	9.1	2048	10.38	97.8	95.0	Pass
193 194	ME 2+025 US ME 2+010 US	951.4 951.4	S S	0.2	2094 2094	9.1	2065 2083	10.1 10.5	98.6 99.5	95.0	Pass
195	ME 2+010 0S	951.4	8	0.2	2094	9.1	2115	10.5	101.0	95.0 95.0	Pass Pass
196	ME 1+975 C	951.3	Š	0.2	2094	9.1	2017	10.73	96.3	95.0	Pass
197	ME 1+950 US	951.3	S	0.2	2094	9.1	2068	10.4	98.7	95.0	Pass
198	ME 1+920 C	951.3	S	0.2	2094	9.1	2042	11.04	97.5	95.0	Pass
199 200	ME 1+900 US ME 1+875 DS	951.3 951.3	S	0.2 0,2	2094 2094	9.1 9.1	2097 2068	9.7 11.11	100.1 98.7	95.0	Pass
201	ME 1+850 C	951.3	8	0,2	2094	9.1	2070	9.6	98.7	95.0 95.0	Pass Pass
202	ME 1+825 DS	951,3	Š	0.2	2094	9.1	2013	10.0	96.1	95.0	Pass
203	ME 1+800 C	951.3	S	0.2	2094	9.1	2071	10.96	98.9	95.0	Pass
204	ME 1+775 DS	951.3	S	0.2	2094	9.1	2058	10.8	98.3	95.0	Pass
205 206	ME 1+750 US ME 1+725 C	951.3 951.3	S	0.2 0.2	2094 2094	9,1	2053	10.0	98.0	95.0	Pass
207	ME 1+700 US	951.3	S	0.2	2094	9.1 9.1	2023 2043	10.6 10.46	96.6 97.5	95.0 95.0	Pass Pass
208	ME 1+675 DS	951.3	s	0.2	2094	9.1	2101	9.7	100.3	95.0	Pass
209	ME 1+590 DS	951.3	S	0.2	2094	9.1	2108	9.99	100.7	95.0	Pass
210	ME 1+615 DS	951.3	S	0.2	2094	9.1	2136	9.1	102.0	95.0	Pass
211	ME 1+615 US	951.3	S	0.2	2094	9.1	2060	9.7	98.4	95.0	Pass
212 213	ME 1+650 DS ME 2+065 C	951.3 951.9	S	0.2 0.2	2094 2094	9.1 9.1	2131 2116	9.33 9.7	101.7 101.0	95.0 95.0	Pass
214	ME 2+050 US	951.7	8	0.2	2094	9.1	2108	9.7	100.7	95.0	Pass Pass
215	ME 2+025 C	951.7	S	0.2	2094	9.1	2106	10,2	100.6	95.0	Pass
216	ME 2+000 DS	951.7	S	0.2	2094	9.1	2120	9.7	101,2	95.0	Pass
217	ME 1+980 US	951.7	S	0.2	2094	9.1	2071	9.55	98.9	95.0	Pass
218 219	ME 1+980 C ME 1+950 DS	951.7 951.9	S S	0,2 0,2	2094 2094	9.1 9.1	2088 2113	10.3 9.5	99.7 100,9	95.0 95.0	Pass
220	ME 1+925 US	951.9	S	0.2	2094	9.1	2042	11.29	97.5	95,0	Pass Pass
221	ME 1+900 US	951.9	S	0.2	2094	9.1	2060	10.6	98.4	95.0	Pass
222	ME 1+725 C	951,6	S	0.2	2094	9.1	2077	9.14	99.2	95.0	Pass
223	ME 1+750 US	951.6	S	0.2	2094	9.1	1997	10.0	95.4	95.0	Pass
224 225	ME 1+775 DS ME 1+825 US	951.6 951.6	S S	0.2	2094 2094	9.1 9.1	2010 2074	10.4 10.17	96.0 99.0	95.0 95.0	Pass
226	ME 1+850 DS	951.9	s	0.2	2094	9.1	2061	9.8	98.4	95.0	Pass Pass
227	ME 1+875 C	951.9	S	0,2	2094	9.1	2045	11.31	97.6	95.0	Pass
228	ME 1+575 C	951.7	S	0.2	2094	9.1	1998	10.7	95.4	95.0	Pass
229	ME 1+600 US ME 1+625 C	951.7	S	0.2	2094	9.1	2081	9.72	99.4	95.0	Pass
230	ME 1+625 C	951.7 951.7	S S	0,2 0.2	2094 2094	9.1 9.1	2069 2033	9.83 9.32	98.8 97.1	95.0 95.0	Pass Pass
232	ME 1+700 US	951.7	S	0.2	2094	9.1	2094	9.12	100.0	95.0	Pass
233	SE 0+975 C	951.6	S	0.2	2094	9.1	2159	7.2	103.1	95.0	Pass
234	SE 1+000 US	951.6	S	0.2	2094	9.1	2061	9.34	98.4	95.0	Pass
235 236	SE 1+025 DS SE 1+050 C	951.6 951.6	S S	0.2	2094	9.1	2121	8.7	101.3	95.0	Pass
237	SE 1+075 US	951.6 951.6	S	0.2 0.2	2094 2094	9.1 9.1	2136 2116	9.03 9.5	102.0 101.0	95.0 95.0	Pass Pass
238	SE 1+100 DS	951.6	S	0.2	2094	9.1	2099	9.28	100.2	95.0	Pass
239	SE 1+125 C	951.6	S	0.2	2094	9,1	2082	9.98	99.4	95.0	Pass
240	SE 1+150 DS	951.6	S	0.2	2094	9.1	2086	9.0	99.6	95.0	Pass
241	SE 1+175 C	951.6 951.9	S	0.2	2094	9.1	2041	9.36	97.5	95.0	Pass
242 243	SE 0+975 US SE 1+000 DS	951.9 951.9	S S	0.2 0.2	2094 2094	9.1 9.1	2065 2103	10.24 9.8	98,6 100,4	95.0 95.0	Pass Pass
244	SE 1+020 C	951.9	S	0.2	2094	9.1	2093	10.68	99.9	95.0	Pass
245	ME 1+575 DS	951.9	S	0.2	2094	9.1	2075	9.39	99.1	95.0	Pass
246	ME 1+600 US	951.9	S	0.2	2094	9.1	2078	9.42	99.2	95.0	Pass
247	ME 1+625 DS	951.9	S	0.2	2094	9.1	2089	9.3	99.7	95.0	Pass
248 249	ME 1+650 C ME 1+675 DS	951.9 951.9	S S	0.2	2094	9.1	2070	9.46	98.8	95.0	Pass
250	ME 1+6/5 US ME 1+700 C	951.9	S	0.2	2094 2094	9.1 9.1	2067 2075	8,6 9.62	98.7 99.1	95.0 95.0	Pass Pass
251	ME 1+725 DS	951.9	S	0.2	2094	9.1	20/3	9.62	97.5	95.0	Pass
252	ME 1+750 US	951.9	S	0.2	2094	9.1	2099	9.27	100.2	95.0	Pass
253	ME 1+775 C	951.9	S	0.2	2094	9.1	2131	8.9	101.7	95.0	Pass
254	ME 1+800 DS	951.9	S	0.2	2094	9.1	2135	8.65	101.9	95.0	Pass
255 256	ME 1+825 US SE 1+050 C	951,9 951,9	S S	0.2 0.2	2094 2094	9.1	2139	8.7	102.1	95.0	Pass
257	SE 1+075 DS	951.9	8	0.2	2094	9.1 9.1	2147 2051	8.57 9.9	102.5 97.9	95.0 95.0	Pass Pass
258	SE 1+100 US	951.9	s	0.2	2094	9.1	2066	10.69	98.6	95.0	Pass
259	SE 1+125 C	951.9	S	0.2	2094	9.1	2110	9.5	100.7	95.0	Pass

V/A ReVd 4-Dec-08

Kniol	nt Piés	old	FIEL	D COMPA	CTION TI	STS (Me	tric)		PROJECT NO.:		101-01/23
232555	PE A PUN	TIME		NUCL	EAR GA	JGE			DATE:	May to Oct	ober 2008
								T	T		_
TEST NO.	Location	Elevation (m)	Zone	Test Depth	Max. Dry Density	Optimum Moisture	Dry Density	Moisture Content	Compaction	Compaction Specification	Pass or
				(m)	(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	(%)
260	SE 1+200 DS	951.7	S	0.2	2094	9.1	2150	9,1	102.7	95.0	Pass
261 262	SE 1+225 US SE 1+275 C	951.6 951.6	S	0.2	2094 2094	9,1 9,1	2079 2102	8.8 10.2	99.3 100.4	95.0 95.0	Pass Pass
263	SE 1+200 C	951.9	S	0.2	2094	9.1	2128	8.9	101.6	95.0	Pass
264	SE 1+250 US	951.9	S	0.2	2094	9.1	2079	9.5	99.3	95.0	Pass
265	SE 1+300 DS	951.9	S	0,2	2094	9.1	2074	10,1	99.0	95.0	Pass
266	PE 4+640 C	950.3	S	0.2	2094 2094	9.1 9.1	2121 2095	9.7 10.6	101.3	95.0 95.0	Pass Pass
267 268	PE 4+670 C PE 4+630 DS	950,3 950,6	S	0.2 0.2	2094	9.1	2093	10.6	99.2	95.0	Pass
269	PE 4+650 US	951.0	s	0.2	2094	9.1	2069	10.9	98.8	95.0	Pass
270	PE 4+630 DS	950.9	S	0.2	2094	9,1	2147	9.4	102.5	95.0	Pass
271	PE 4+660 C	953.3	S	0.2	2094	9.1	2102	10.2	100.4	95.0	Pass
272 273	PE 4+640 DS PE 4+670 C	951.2 951.2	S S	0.2 0.2	2094 2094	9,1 9,1	2061 2122	10.7	98,4 101,3	95.0 95.0	Pass Pass
274	PE 4+630 DS	951.9	Š	0.2	2094	9.1	2095	10.4	100.0	95.0	Pass
275	PE 4+650 C	951.8	S	0.2	2094	9.1	2127	9.2	101.6	95.0	Pass
276	PE 4+630 C	951.9	S	0.2	2094	9.1	2080	10.7	99,3	95.0	Pass
277	ME 26+00 W	951.3	S	0.2	2094	9.1	2029	7.5	96.9	95,0	Pass
278 279	ME 25+75 W ME 25+50 W	951.3 951.3	S	0.2	2094 2094	9.1 9.1	2026 2089	6.8 8.1	96.7 99.7	95.0 95.0	Pass Pass
280	ME 25+25 W	951.3	s	0.2	2094	9.1	2039	8.9	97,4	95.0	Pass
281	ME 25+25 C	951.9	S	0.2	2094	9.1	2015	5,5	96.2	95.0	Pass
282	ME 25+00 W	951.3	S	0.2	2094	9.1	2016	10.4	96.3	95.0	Pass
283	ME 24+75 W	951.3 951.9	S S	0.2	2094 2094	9.1 9.1	2039 2043	8.2 7.3	97,4 97,5	95,0 95,0	Pass Pass
284 285	ME 24+75 US ME 24+50 W	951.9 951.3	S	0.2 0.2	2094	9.1	2043	7.9	100.3	95.0	Pass
286	ME 24+25 W	951.3	s	0.2	2094	9.1	2145	8.4	102.4	95.0	Pass
287	ME 24+25 C	951,3	S	0.2	2094	9.1	2085	6.9	99.6	95.0	Pass
288	ME 23+25 C	951.6	S	0.2	2094	9.1	2066	7.0	98.6	95.0	Pass
289	ME 22+75 C ME 23+00 W	951.6	<u> </u>	0.2	2094 2094	9,1 9,1	2095 2044	6.7 8.4	100.0 97.6	95.0 95.0	Pass
290 291	ME 23+25 W	951.3 951.3	S	0.2 0.2	2094	9.1	1991	7.1	95.1	95.0	Pass Pass
292	ME 23+75 W	951,3	s	0.2	2094	9.1	2032	9.7	97.0	95.0	Pass
293	ME 26+25 W	951.3	S	0.2	2094	9,1	2051	7.7	97.9	95.0	Pass
294	ME 26+25 C	951.9	S	0.2	2094	9.1	2064	5.5	98.5	95.0	Pass
295	ME 26+50 W	951,3	S	0.2	2094	9.1	2036	7.2	97.2	95,0 95,0	Pass
296 297	ME 26+75 W ME 27+25 US	951.3 951.6	S S	0.2	2094 2094	9.1 9.1	1994 2083	8.0 6.8	95.2 99.5	95.0	Pass Pass
298	PE 28+25 C	951.9	s	0.2	2094	9.1	2039	6.0	97.4	95.0	Pass
299	PE 28+75 DS	951.9	S	0.2	2094	9.1	2180	5.9	104.1	95.0	Pass
300	PE 29+25 C	951.9	S	0.2	2094	9.1	1992	5.2	95.1	95.0	Pass
301	PE 29+75 US	951.9	S	0.2	2094	9.1	2006	6.6	95.8	95,0	Pass
302 303	PE 30+25 DS PE 30+75 C	951.9 951.9	S	0.2 0.2	2094 2094	9,1 9,1	2134 2056	5.9 6.5	101.9 98.2	95.0 95.0	Pass Pass
304	PE 31+25 US	951.9	s	0.2	2094	9.1	2118	7.2	101.1	95.0	Pass
305	PE 31+75 C	951.9	S	0.2	2094	9.1	2128	6.5	101.6	95.0	Pass
306	PE 32+25 US	951.9	S	0.2	2094	9.1	2118	7,2	101.1	95.0	Pass
307 308	PE 32+75 US PE 33+25 DS	951.9 951.9	S S	0.2 0.2	2094 2094	9.1 9.1	2010 2102	6.9	96.0	95.0 95.0	Pass Pass
309	PE 33+75 C	951.9	s	0.2	2094	9.1	2141	5.8	102.2	95.0	Pass
310	PE 34+25 C	951,9	S	0.2	2094	9.1	2036	6.1	97.2	95.0	Pass
311	PE 35+00 C	951.9	S	0.2	2094	9.1	2092	6.4	99.9	95.0	Pass
312	PE 35+75 US	951.9	s	0.2	2094	9.1	2080	5.8	99.3	95.0	Pass
313 314	PE 36+50 DS PE 38+00 C	951.9 951.6	S S	0.2 0.2	2094 2094	9.1 9.1	2034 2171	7.0 5.7	97.1	95.0 95.0	Pass Pass
315	PE 38+75 US	951.6	Š	0.2	2094	9.1	2004	6.7	95.7	95.0	Pass
316	PE 39+50 C	951.6	S	0.2	2094	9.1	2145	6,4	102.4	95.0	Pass
317	PE 41+00 C	951.6	S	0.2	2094	9.1	2128	6.1	101.6	95.0	Pass
318 319	PE 41+75 DS PE 42+50 US	951.6 951.6	S	0.2	2094 2094	9.1 9.1	2067 2109	7.0	98.7	95.0 95.0	Pass Pass
320	PE 43+00 C	951.6	S	0.2	2094	9.1	2086	6.6	99.6	95.0	Pass
321	PE 43+75 US	951.6	S	0.2	2094	9.1	2096	6.0	100.1	95.0	Pass
322	PE 44+50 DS	951.6	S	0.2	2094	9.1	2064	6.6	98.5	95.0	Pass
323 324	PE 45+25 C	951.6 951.6	S S	0.2	2094 2094	9.1 9.1	2063 2099	6.0 5.8	98.5 100.2	95.0 95.0	Pass Pass
325	PE 46+00 C ME 22+50 US	951.6 951.9	S	0.2	2094	9.1	2142	5.6	100.2	95.0	Pass
326	ME 22+00 C	951.9	Š	0.2	2094	9.1	2186	5.2	104.4	95.0	Pass
327	ME 22+00 W	951.3	S	0.2	2094	9.1	2043	6.2	97.5	95.0	Pass
328	ME 22+25 W	951.3	S	0.2	2094	9.1	2115	7.9	101.0	95.0	Pass
329	ME 22+50 W	951.3	S	0.2	2094	9.1	2001	6.2	95.5	95.0	Pass
330 331	ME 22+75 W ME 26+75 W	951.3 951.6	S S	0.2	2094 2094	9.1 9.1	2082	8.3	99.4 96.9	95.0 95.0	Pass Pass
332	ME 26+50 W	951.6	S	0.2	2094	9.1	2102	7.8	100.4	95.0	Pass
333	ME 26+00 W	951.6	S	0.2	2094	+ 9.1	2119	8.1	101.2	95.0	Pass
334	ME 25+50 W	951.6	S	0.2	2094	9.1	2093	8.0	99.9	95.0	Pass
335	ME 25+00 W	951.6	S	0.2	2094	9.1	2046	7.4	97.7	95.0	Pass
336	ME 24+50 W	951.6	S	0.2	2094 2094	9.1 9.1	2077 2015	8.0 9.9	99.2 96.2	95.0 95.0	Pass
337 338	ME 24+00 W ME 23+50 W	951.6 951.6	S	0.2 0.2	2094	9.1	2105	9.9	100,5	95.0	Pass Pass
339	ME 22+00 W	951.6	S	0.2	2094	9.1	2063	9,9	98.5	95.0	Pass
340	ME 21+50 W	951.6	S	0.2	2094	9.1	2062	7.3	98.5	95,0	Pass
341	ME 22+50 W	951.6	S	0.2	2094	9.1	2068	9.5	98.7	95.0	Pass
342	ME 23+00 W	951.6	S	0.2	2094	9.1	2023	10.0	96.6	95.0	Pass
		951.9	S	0.2	2094	9.1	1995	10.2	95.3	95.0	Pass
343	ME 26+25 US					0.1		۵۸	07.0	05.0	Dann
343 344 345	ME 25+50 C ME 25+00 C	951.9 951.9	S	0.2 0.2	2094 2094	9.1 9.1	2049 2053	9.0 8.2	97.8 98.0	95.0 95.0	Pass Pass

Kmim	ht Piés	:nId	FIE	LD COMPA	ACTION T	ESTS (Me	etric)		PROJECT NO.:		101-01/23
week!	CONSUL.	TIME		NUC	LEAR GA	UGE			DATE:	May to Oc	tober 2008
						I		I	T	1	
TEST NO.	Location	Elevation	Zone	Test Depth	Max. Dry	Optimum Moisture	Dry Density	Moisture Content	Compaction	Compaction Specification	Pass
		(m)		(m)	Density (kg/m ³)	(%)	(kg/m³)	(%)	(%)	(%)	or (%)
347	ME 24+00 C	951.9	s	0,2	2094	9.1	2057	7.7	98.2	95.0	Pass
348	ME 23+50 C	951.9	s	0.2	2094	9.1	2103	8.7	100.4	95.0	Pass
349	ME 23+00 DS	951.9	S	0.2	2094	9.1	2001	9.0	95.5	95.0	Pass
350	ME 22+50 DS	951,9	S	0.2	2094	9.1	2009	10.0	95.9	95.0	Pass
351	ME 21+50 DS	951.9	<u>s</u>	0.2	2094	9.1	2128	9.5	101.6	95.0	Pass
352	ME 21+00 C	951.9	S	0.2	2094	9.1	2037	9.0	97.3	95.0	Pass
353 354	ME 26+25 C ME 25+50 US	952.2 952.2	\$ \$	0.2	2094 2094	9.1 9.1	2006 2160	8,6 5.4	95.8	95.0 95.0	Pass Pass
355	ME 25+00 DS	952.2	š	0.2	2094	9.1	2048	10.2	97.8	95.0	Pass
356	ME 24+50 C	952.2	S	0.2	2094	9.1	2056	9.1	98.2	95.0	Pass
357	ME 24+00 US	952.2	S	0.2	2094	9.1	2023	9,4	96,6	95.0	Pass
358	ME 23+50 DS	952.2	S	0.2	2094	9.1	2054	9.4	98.1	95.0	Pass
359	ME 23+00 C	952.2	<u>s</u>	0.2	2094	9.1	2052	10.4	98.0	95.0	Pass
360 361	ME 22+50 C ME 21+50 C	952.2 952.2	S S	0.2	2094 2094	9.1 9.1	2057 2070	10.2 8.4	98.2 98.8	95.0 95.0	Pass Pass
362	ME 21+00 US	952.2	s	0.2	2094	9.1	1995	10.0	95.3	95.0	Pass
363	SE 13+25 US	951,3	S	0.2	2094	9.1	2062	9.7	98.5	95.0	Pass
364	SE 13+50 DS	951,3	S	0.2	2094	9.1	1990	9.8	95.0	95.0	Pass
365	SE 13+75 C	951.3	S	0.2	2094	9.1	2099	8.7	100.2	95.0	Pass
366	SE 14+00 US	951.3	<u>s</u>	0.2	2094	9.1	2050	9.7	97.9	95.0	Pass
367 368	SE 14+25 C	951.3	S S	0,2	2094	9.1	2069	11.3	98.8	95.0	Pass
368 369	SE 14+50 DS ME 26+25 C	951.3 952.5	S S	0.2	2094 2094	9,1 9,1	2052 2063	10.5 8.5	98.0 98.5	95.0 95.0	Pass Pass
370	ME 25+50 US	952.5	S	0.2	2094	9.1	2103	7.8	100.4	95.0	Pass
371	ME 25+00 DS	952.5	S	0.2	2094	9.1	2043	8.9	97.5	95.0	Pass
372	ME 24+50 C	952.5	s	0.2	2094	9.1	2062	9.8	98.5	95.0	Pass
373	ME 24+00 US	952.5	S	0.2	2094	9.1	2067	7.5	98.7	95.0	Pass
374	ME 23+50 DS	952.5	S	0.2	2094	9,1	2076	9.2	99.1	95.0	Pass
375	SE 13+25 US	951.6	<u>s</u>	0.2	2094	9.1	2083	8.2	99.5	95.0	Pass
376 377	SE 13+75 DS SE 14+25 C	951.6 951.6	S S	0.2	2094 2094	9.1 9.1	2058 2061	7.1 7.2	98.3 98.4	95.0 95.0	Pass Pass
378	SE 14+75 US	951.6	s	0.2	2094	9.1	2119	8.2	101.2	95.0	Pass
379	SE 15+25 C	951.6	S	0.2	2094	9.1	2116	6.5	101.0	95.0	Pass
380	ME 15+50 DS	951.6	S	0.2	2094	9.1	2097	8.2	100.1	95.0	Pass
381	ME 23+00 C	952.5	S	0.2	2094	9.1	2159	8.1	103.1	95.0	Pass
382	ME 22+50 US	952.5	S	0.2	2094	9.1	2069	8.5	98.8	95,0	Pass
383	ME 22+00 C	952.5	<u>s</u>	0.2	2094	9.1	2059	8,1	98.3	95,0	Pass
384 385	ME 21+50 US ME 21+00 DS	952.5 952.5	S S	0.2 0.2	2094 2094	9.1 9.1	2054 2066	10.1 10.2	98.1 98.6	95.0 95.0	Pass
386	SE 6+25 C	951.6	S	0.2	2094	9.1	2089	10.2	99.7	95.0	Pass Pass
387	ME 26+25 US	952.8	s	0.2	2094	9.1	2152	7.1	102.8	95.0	Pass
388	ME 25+50 C	952.8	S	0.2	2094	9.1	2064	7.2	98.5	95.0	Pass
389	ME 25+00 DS	952.8	S	0,2	2094	9.1	2064	8,8	98.5	95,0	Pass
390	ME 24+50 C	952.8	S	0.2	2094	9.1	2189	7.6	104.5	95.0	Pass
391	ME 24+00 US	952.8	S	0.2	2094	9.1	2111	8.4	100.8	95.0	Pass
392 393	ME 23+50 C ME 23+00 US	952.8 952.8	S S	0.2 0.2	2094 2094	9.1 9.1	2082 2063	7.9 9.7	99,4 98,5	95.0 95.0	Pass Pass
394	SE 6+15 DS	951.7	S	0.2	2094	9.1	2066	10.0	98.6	95.0	Pass
395	SE 6+00 C	953.2	S	0.2	2094	9.1	2042	10,6	97.5	95,0	Pass
396	ME 22+50 C	952.8	S	0.2	2094	9.1	2207	7.5	105.4	95.0	Pass
397	ME 22+00 US	952.8	<u>s</u>	0.2	2094	9.1	2047	8.0	97.7	95.0	Pass
398	ME 21+50 DS	952.8	S	0.2	2094	9.1	2054	9.1	98.1	95.0	Pass
399 400	ME 21+00 C SE 6+10 C	952.8 952.0	S S	0.2 0.2	2094 2094	9.1 9.1	2080 2073	8.9 9.5	99.3 99.0	95.0 95.0	Pass Pass
401	SE 6+00 US	953.5	S	0.2	2094	9.1	2008	10.1	95.9	95.0	Pass
402	ME 26+25 US	953.1	s	0.2	2094	9,1	2077	9.2	99.2	95.0	Pass
403	ME 25+75 C	953.1	S	0.2	2094	9.1	2083	9,3	99.5	95.0	Pass
404	ME 25+25 C	953.1	S	0.2	2094	9.1	2080	8.9	99.3	95.0	Pass
405	ME 24+50 C	953.1	<u>s</u>	0.2	2094	9.1	2063	10.5	98.5	95.0	Pass
406	ME 24+00 DS	953.1	S	0.2	2094	9.1	2062	10.1	98.5	95.0	Pass
407 408	ME 23+50 C ME 23+00 US	953,1 953.1	S S	0.2 0.2	2094 2094	9.1 9.1	2024 2102	11.5 10.6	96,6 100,4	95.0 95.0	Pass Pass
409	ME 27+25 W	951.3	S	0.2	2094	9.1	2033	10.6	97.1	95.0	Pass
410	ME 27+75 W	951.3	S	0.2	2094	9.1	2076	7.4	99.1	95.0	Pass
411	ME 28+00 W	951.3	S	0.2	2094	9.1	2021	9,0	96.5	95.0	Pass
412	PE 28+25W	951,3	S	0.2	2094	9.1	2035	9.2	97.2	95.0	Pass
413	PE 28+50W	951.3	S	0.2	2094	9.1	2003	10.2	95.6	95.0	Pass
414	PE 28+95W	951.3	S	0.2	2094	9.1	2089	8.8	99.7	95.0	Pass
415	PE 29+50 W ME 27+25 W	951.3	S S	0.2	2094	9,1	2026	9.8	96.7	95.0	Pass
416 417	ME 27+25 W	951.6 951.6	<u>s</u>	0.2	2094 2094	9.1 9.1	1995 2092	10.0 9.2	95,3 99,9	95.0 95.0	Pass Pass
417	ME 27+75 W	951.6	S	0.2	2094	9.1	2038	9.8	97.3	95.0	Pass
419	PE 28+25W	951.6	s	0.2	2094	9.1	2114	9.0	100.9	95.0	Pass
420	PE 28+50 W	951.6	Š	0.2	2094	9.1	2024	10.6	96.6	95.0	Pass
421	PE 29+00W	951.6	S	0.2	2094	9.1	1998	10.6	95.4	95.0	Pass
422	PE 29+50W	951.6	S	0.2	2094	9.1	2038	10.1	97.3	95.0	Pass
423	ME 22+50 C	953.1	S	0.2	2094	9.1	2052	8.8	98.0	95.0	Pass
424	ME 22+00 DS	953.1	S	0.2	2094	9.1	2031	9.3	97.0	95.0	Pass
425	ME 21+50 US	953.1	S S	0.2	2094	9.1	2053	10.0	98.0	95.0	Pass
426 427	ME 21+00 C PE 29+00 W	953.1 951.9	S	0.2 0.2	2094 2094	9.1 9.1	2045 2075	8.5 9.6	97.6 99.1	95.0 95.0	Pass Pass
428	PE 28+50W	951.9	S S	0.2	2094	9.1	2075	8.4	100.2	95.0	Pass
429	PE 28+00W	951.9	S	0.2	2094	9.1	2075	10.1	99.1	95.0	Pass
430	ME 27+25 W	951.9	S	0,2	2094	9.1	2086	9,1	99.6	95.0	Pass
431	ME 26+75 W	953.6	S	0,2	2094	9.1	2061	9.6	98.4	95.0	Pass
432	ME 26+00 C	953.6	S	0.2	2094	9.1	2040	11.2	97.4	95.0	Pass
433	ME 25+50 DS	953.6	S	0.2	2094	9.1	2077	9.7	99.2	95.0	Pass

Revd 4-Dec-08 FIELD COMPACTION TESTS (Metric)

#N/A											Revd 4-Dec-0
Waries!	nt Piés	old	FIEL	.D COMPA	CTION TE	ESTS (Me	tric)		PROJECT NO .:		101-01/23
ateren.	se a logs	<i>QFLQB</i>		NUCL	EAR GAL	JGE			DATE:	May to Oct	ober 2008
							_				
TEST NO.	Location	Elevation (m)	Zone	Test Depth	Max. Dry Density	Optimum Moisture	Dry Density	Moisture Content	Compaction	Compaction Specification	Pass or
		(11)	ŀ	(m)	(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	(%)
434	ME 25+00 US	953.6	s	0.2	2094	9,1	2101	10.1	100.3	95.0	Pass
435	ME 24+50 DS	953,6	S	0.2	2094	9.1	2068	10.2	98.7	95.0	Pass
436	ME 24+00 C	953.6	S	0.2	2094	9.1	2098	9.5 10.2	97.5	95.0 95.0	Pass Pass
437 438	ME 23+50 US ME 23+00 C	953.6 953.6	S S	0.2	2094 2094	9.1 9.1	2043 2038	10.2	97.3	95.0	Pass
439	PE 31+00 W	952.6	s	0.2	2094	9.1	2009	10.6	95.9	95.0	Pass
440	PE 30+50W	952.3	s	0.2	2094	9.1	2094	9.5	100.0	95.0	Pass
441	PE 30+00W	952.3	S	0.2	2094	9.1	2170	8.1	103.6	95.0	Pass
442 443	ME 26+75 US ME 27+25 DS	952.2 952.2	S S	0,2 0,2	2094 2094	9.1 9.1	2112 2091	9.3 8.9	99.8	95.0 95.0	Pass Pass
444	ME 27+75 US	952.2	s	0.2	2094	9.1	2035	10.0	97.2	95.0	Pass
445	PE 28+25 C	952.2	S	0.2	2094	9,1	2052	9.6	98.0	95.0	Pass
446	PE 28+75 C	952.2	<u>s</u>	0.2	2094	9.1	2071	10.3	98.9	95.0	Pass
447 448	PE 29+25 US PE 29+50 W	952.2 951,6	S S	0.2 0.2	2094 2094	9.1 9.1	2120 2048	9.3	97.8	95.0 95.0	Pass Pass
449	PE 30+00W	951.6	S	0.2	2094	9.1	2050	10.9	97.9	95.0	Pass
450	PE 30+50 W	951.6	S	0.2	2094	9.1	2037	10.8	97.3	95.0	Pass
451	ME 22+75 US	953.6	S	0.2	2094	9.1	2100	9.9	100.3	95.0	Pass
452	ME 22+25 C ME 21+75 DS	953,6	8	0.2 0.2	2094 2094	9.1 9.1	2103 2085	9.1 9.3	99.6	95.0 95.0	Pass Pass
453 454	ME 21+75 US	953.6 953.6	S	0.2	2094	9.1	2085	10.1	99.6	95.0	Pass
455	PE 31+50W	952.0	S	0.2	2094	9.1	2069	10.9	98.8	95.0	Pass
456	PE 31+00 W	952.0	S	0.2	2094	9.1	2111	9.6	100.8	95.0	Pass
457	PE 30+50W	952.0	S	0.2	2094	9.1	2158	10.4	103.0 98.5	95.0 95.0	Pass
458 459	PE 30+00 W ME 26+75 C	952.0 952.6	S S	0.2 0.2	2094 2094	9.1 9.1	2064 2028	11,1 11,4	96.8	95.0	Pass Pass
460	PE 27+25 DS	952.6	S	0.2	2094	9,1	2014	10.6	96.2	95.0	Pass
461	PE 27+75 DS	952.6	S	0.2	2094	9.1	2049	11.5	97.8	95.0	Pass
462	PE 28+25 C	952.6	S	0.2	2094	9.1	2046	10.8	97.7	95.0	Pass
463	PE 29+50 C	952.3	S S	0.2 0.2	2094 2094	9,1 9,1	2037 2049	12.0 10.3	97.3 97.8	95.0 95.0	Pass Pass
464 465	PE 30+00 C PE 30+50 DS	952.3 952.3	s	0.2	2094	9.1	2049	10.5	97.8	95.0	Pass
466	PE 31+00 US	952.3	š	0.2	2094	9,1	2077	9.9	99.2	95.0	Pass
467	PE 28+75 C	952.6	S	0.2	2094	9.1	2026	9.8	96.7	95.0	Pass
468	PE 29+15 C	952.6	S	0.2	2094	9.1	2043	10.2	97.5	95.0	Pass
469	PE 31+40 C PE 31+25 US	952.3 952.3	S	0.2 0.2	2094 2094	9.1 9.1	2046 2041	11.1	97.7 97.5	95.0 95.0	Pass Pass
470 471	PE 30+75 C	952.3	S S	0.2	2094	9.1	2013	11.7	96.1	95.0	Pass
472	PE 30+25 US	952.3	s	0.2	2094	9.1	2024	11.8	96.6	95.0	Pass
473	PE 29+75 US	952.3	S	0.2	2094	9.1	2058	11.1	98.3	95.0	Pass
474	ME 26+50 W	951.3	S	0.2	2094	9.1	2079	8.5	99.3	95.0	Pass
475	PE 35+50W	951.3	S	0.2	2094 2094	9.1 9.1	2132 2156	9.4 8.5	101.8 102.9	95.0 95.0	Pass Pass
476 477	PE 34+50 US PE 33+50 W	951.3 951.3	S	0.2	2094	9.1	2018	9.5	96.4	95.0	Pass
478	PE 32+75 W	951.3	Š	0.2	2094	9.1	2008	8.8	95.9	95.0	Pass
479	PE 32+00W	951.3	S	0.2	2094	9.1	2128	8.4	101.6	95.0	Pass
480	PE 28+25 US	952.7	S	0,2	2094	9.1	2072	9.7	98.9	95.0	Pass
481 482	PE 28+00 DS ME 27+50 C	952.7 952.7	S	0.2 0.2	2094 2094	9.1 9,1	2071 2114	9.8	98.9	95.0 95.0	Pass Pass
483	ME 26+90 C	952.7	S	0.2	2094	9.1	2113	8.1	100.9	95.0	Pass
484	PE 28+65 DS	952.7	S	0.2	2094	9.1	1995	12.2	95.3	95.0	Pass
485	PE 28+65 C	952.7	S	0.2	2094	9.1	2013	11.1	96.1	95.0	Pass
486	PE 29+50 US	952.7	S	0.2	2094	9.1	2047 2049	9.8 9.6	97.7 97.8	95.0 95.0	Pass Pass
487 488	PE 30+90 US PE 30+25 C	952.6 952.6	S	0.2 0.2	2094 2094	9.1	2005	10.8	95.7	95.0	Pass
489	PE 29+75 US	952.9	s	0.2	2094	9,1	2037	11.4	97.3	95.0	Pass
490	PE 29+00 DS	952.9	S	0.2	2094	9.1	2001	10.6	95.5	95.0	Pass
491	PE 31+40 DS	952,9	S	0.2	2094	9.1	2068	9.6	98.7	95,0	Pass
492 493	PE 31+75W PE 32+50W	952.9 952.9	S S	0.2 0.2	2094 2094	9.1 9.1	2038 2051	10.0	97.3	95.0 95.0	Pass Pass
494	PE 33+00W	952.9	S	0.2	2094	9.1	2062	8.8	98.5	95.0	Pass
495	PE 33+75W	952.9	S	0.2	2094	9.1	2116	8.0	101.0	95.0	Pass
496	PE 34+25W	951.9	S	0.2	2094	9.1	2018	10.7	96.4	95.0	Pass
497 498	PE 35+00 W ME 26+75 C	951.9 953.2	S S	0.2 0.2	2094 2094	9.1 9.1	2112 2046	8.6 10.3	100.8 97.7	95.0 95.0	Pass Pass
498	ME 27+25 US	953.2 953.2	S	0.2	2094	9.1	2036	10.3	97.2	95.0	Pass
500	ME 27+75 US	953.2	S	0.2	2094	9.1	2039	10.4	97.4	95.0	Pass
501	PE 28+25 US	953.2	S	0.2	2094	9.1	2050	10.4	97.9	95.0	Pass
502	PE 28+75 DS	953.2	<u> </u>	0.2	2094	9.1	2105	9,3	100.5	95.0 95.0	Pass
503 504	PE 29+25 C PE 29+75 DS	953.2 953.2	S S	0.2 0.2	2094 2094	9.1 9.1	2067 2045	9.6 10.9	98.7 97.6	95.0	Pass Pass
505	PE 30+25 C	953.2	S	0.2	2094	9.1	2079	10.1	99.3	95.0	Pass
506	PE 31+40 US	953.0	S	0.2	2094	9.1	2065	10.3	98.6	95.0	Pass
507	PE 31+00 DS	953.0	S	0.2	2094	9.1	2058	10.4	98.3	95.0	Pass
508	PE 30+50 C	953.0	S	0.2	2094	9.1	2093	9.9	99.9	95.0	Pass
509 510	ME 26+70 US	953.3 953.3	S	0.2	2094 2094	9,1	2122 2035	8.6 10,9	101.3 97.2	95.0 95.0	Pass Pass
510 511	ME 27+25 DS ME 27+75 US	953.3	S	0.2	2094	9.1	2010	9.7	96.0	95.0	Pass
512	PE 28+25 C	953.5	S	0.2	2094	9.1	2096	8.0	100.1	95,0	Pass
513	PE 28+75 US	953.5	S	0.2	2094	9,1	2005	11,4	95.7	95,0	Pass
514	PE 29+00 C	953,5	S	0.2	2094	9.1	2065	9.2	98.6	95.0	Pass
515	PE 30+50 C	953.3	S	0.2	2094	9.1	2067	10.4	98.7	95.0	Pass
516 517	PE 30+00 US PE 29+50 DS	953,3 953.3	S S	0.2 0.2	2094 2094	9.1 9.1	2016 2052	12.6 9.7	96,3 98.0	95.0 95.0	Pass Pass
517 518	PE 31+25 US	953.3 953.3	8	0.2	2094	9.1	2052	9.9	99.1	95.0	Pass
	ME 26+50 DS	953.0	s	0.2	2094	9.1	2049	10.2	97.8	95.0	Pass
519	INE ZOTOU DO										

Knigi	ht Piés	old	FIE	LD COMPA	CTION TI LEAR GA		etric)		PROJECT NO.:		101-01/23
	COMBUL.	TIME	I	NUCI	LEAR GA	UGE	1		DATE:	May to Oct	ober 2008
TEST NO.	Location	Elevation	Zone	Test	Max. Dry	Optimum	Dry	Moisture		Compaction	Pass
	İ	(m)		Depth	Density	Moisture	Density	Content	Compaction	Specification	ог
				(m)	(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	(%)
521 522	PE 28+00 US PE 28+50 C	953.7 953.7	S S	0.2	2094 2094	9.1	2006	10.6	95.8	95.0	Pass
523	PE 37+50 W	951.3	S	0.2	2094	9.1 9.1	2067 2144	10.2 8.0	98.7 102.4	95.0 95.0	Pass Pass
524	PE 37+00 W	951.3	s	0.2	2094	9.1	2128	7.6	101.6	95.0	Pass
525	PE 36+50 W	951.3	S	0.2	2094	9.1	2034	7.7	97.1	95.0	Pass
526	PE 36+25 W	951.3	S	0.2	2094	9.1	2115	8.3	101.0	95.0	Pass
527	PE 35+50W	951.6	S	0.2	2094	9.1	2103	8.6	100.4	95.0	Pass
528	PE 35+00W	951.9	S	0.2	2094	9.1	2057	10.1	98.2	95.0	Pass
529	PE 34+75W	951.9	S	0.2	2094	9.1	2052	9.8	98.0	95.0	Pass
530	PE 35+50W	951.9	S	0.2	2094	9.1	2040	10.0	97.4	95.0	Pass
531	PE 31+25 C	953.6	S	0.2	2094	9.1	2062	9.5	98.5	95.0	Pass
532 533	PE 30+75 US PE 30+25 DS	953.6 953.6	S C	0.2	2094	9.1	2021 2078	9.2	96.5	95.0	Pass
534	PE 29+15 US	953.9	S	0.2 0.2	2094 2094	9.1 9.1	2078	9.6 8.4	99.2 98.9	95.0 95.0	Pass Pass
535	PE 28+50 DS	953.9	S	0.2	2094	9.1	2032	9.3	97.0	95.0	Pass
536	PE 32+00 W	952.1	Š	0.2	2094	9.1	2105	9.3	100.5	95.0	Pass
537	PE 32+35W	952,1	S	0.2	2094	9,1	2064	10.5	98.5	95.0	Pass
538	PE 36+50W	951.9	S	0.2	2094	9.1	2060	10.4	98.4	95.0	Pass
539	PE 37+00 W	951.9	S	0.2	2094	9,1	2078	9.8	99.2	95.0	Pass
540	PE 36+25W	952.3	S	0.2	2094	9.1	2053	10.4	98.0	95.0	Pass
541	PE 35+75W	951.9	S	0.2	2094	9.1	2051	11.1	97.9	95.0	Pass
542	PE 35+25 W	952.3	S	0.2	2094	9.1	2049	11.2	97.8	95.0	Pass
543	PE 34+65W	952.3	S	0.2	2094	9.1	2052	9.4	98.0	95.0	Pass
544 545	PE 33+25W PE 32+75W	952.2 952.3	<u> </u>	0.2	2094	9,1	2028	9.6	96.8	95.0	Pass
545 546	ME 26+75 C	952.3 953.6	S S	0 <u>.2</u> 0,2	2094 2094	9.1 9.1	2004 2117	9.9 8.3	95,7 101.1	95.0 95.0	Pass
547	ME 26+90 C	953.6	S	0.2	2094	9.1	2117	10.1	98.0	95.0	Pass Pass
548	ME 27+40 DS	953.6	S	0.2	2094	9.1	2082	8.9	99.4	95.0	Pass
549	PE 31+75 C	953.2	S	0.2	2094	9.1	2063	9.5	98.5	95.0	Pass
550	PE 32+25 C	953.2	Š	0.2	2094	9.1	2072	9.4	98.9	95.0	Pass
551	PE 33+00 US	953.2	S	0.2	2094	9.1	2023	11.3	96.6	95.0	Pass
552	PE 33+50 DS	953.2	S	0.2	2094	9.1	2019	11.0	96.4	95.0	Pass
553	PE 34+00 C	952.3	S	0.2	2094	9,1	2032	10.9	97.0	95.0	Pass
554	PE 34+50 US	952.3	S	0.2	2094	9.1	2005	11.0	95.7	95.0	Pass
555	PE 37+75W	951,3	<u>S</u>	0.2	2094	9.1	2085	9.0	99.6	95.0	Pass
556	PE 38+25W	951.3	<u>s</u>	0.2	2094	9.1	2083	7.5	99.5	95.0	Pass
557 558	PE 38+75W PE 39+25W	951.3	<u>s</u>	0.2	2094	9.1	2067	9.7	98.7	95.0	Pass
559	PE 36+50 C	951.3 952.3	S S	0.2	2094 2094	9.1 9.1	2077 2112	9.7 10.3	99.2 100.8	95.0 95.0	Pass
560	PE 35+75 C	952.3	s	0.2	2094	9,1	2039	10.7	97.4	95.0	Pass Pass
561	PE 37+00 DS	952.3	s	0.2	2094	9.1	2047	9.4	97.7	95.0	Pass
562	PE 37+50 US	952.3	S	0.2	2094	9,1	2068	10.0	98.7	95.0	Pass
563	PE 38+00 W	951.6	s	0.2	2094	9.1	2102	9.9	100.4	95.0	Pass
564	PE 38+50W	951.6	S	0.2	2094	9.1	2012	10.7	96.1	95.0	Pass
565	PE 38+50W	951.6	S	0.2	2094	9.1	2074	9.4	99.0	95.0	Pass
566	PE 39+00 W	951.6	S	0.2	2094	9.1	2055	10.3	98.1	95.0	Pass
567	PE 31+75 C	952.6	S	0.2	2094	9,1	2017	10.6	96,3	95.0	Pass
568	PE 32+35 DS	952.6	s	0.2	2094	9.1	2008	10.9	95,9	95.0	Pass
569	PE 33+00 US	952.6	s	0.2	2094	9.1	2004	10.4	95.7	95.0	Pass
570 571	PE 34+00 DS PE 34+50 C	952.6	S S	0.2 0.2	2094	9.1	2032	10.0	97.0	95.0	Pass
572	PE 35+00 US	952.6 952.6	s	0.2	2094 2094	9.1 9.1	2055 2013	9.8	98.1 96,1	95.0 95.0	Pass Pass
573	PE 35+65 C	952.6	- S	0.2	2094	9.1	2039	10.7	97.4	95.0	Pass
574	PE 36+25 DS	952.6	s	0.2	2094	9.1	2061	10.7	98.4	95.0	Pass
575	PE 36+75 US	952.6	Š	0.2	2094	9.1	2028	11.1	96.8	95.0	Pass
576	PE 37+50 C	952.6	S	0.2	2094	9.1	2010	10.7	96.0	95.0	Pass
577	PE 39+00 W	951.9	S	0.2	2094	9,1	2070	10.8	98.8	95.0	Pass
578	PE 37+75W	951.9	S	0.2	2094	9.1	2007	12.2	95.8	95.0	Pass
579	PE 37+25 C	952.9	S	0.2	2094	9.1	2035	10.5	97.2	95.0	Pass
580	PE 36+75 US	952.9	<u>s</u>	0.2	2094	9.1	2016	11.5	96.3	95.0	Pass
581	PE 33+75 US	952.9	s	0.2	2094	9.1	1995	11.2	95.3	95.0	Pass
582	PE 34+75 C	952.9	S	0.2	2094	9.1	2066	10.0	98.6	95.0	Pass
583	PE 35+25 US PE 35+75 C	952.9	S	0.2	2094	9.1	2017	9.9	96.3	95.0	Pass
584 585	PE 36+25 DS	952.9 952.9	S S	0.2 0.2	2094 2094	9.1 9.1	2056 2010	10.8 11.0	98.2 96.0	95.0 95.0	Pass
586	ME 22+00 DS	952.9	S	0.2	2094	9.1	2010	12.1	95.6	95.0 95.0	Pass Pass
587	ME 22+00 US	954.0	S	0.2	2094	9.1	2003	11.3	97.7	95.0	Pass
588	ME 21+50 C	954.0	s	0.2	2094	9.1	2079	9.8	99.3	95.0	Pass
589	ME 22+50 C	954.0	Š	0.2	2094	9.1	2004	11.0	95.7	95.0	Pass
590	ME 24+85 C	954.0	S	0.2	2094	9.1	2022	10.8	96.5	95.0	Pass
591	ME 24+50 C	954.0	S	0,2	2094	9.1	2045	10.6	97.6	95.0	Pass
592	ME 24+00 US	954.0	S	0.2	2094	9.1	2007	12.2	95.8	95.0	Pass
593	ME 23+50 US	954.0	S	0.2	2094	9.1	2020	11.4	96.4	95.0	Pass
594	ME 23+25 C	954.0	S	0.2	2094	9.1	2015	11.0	96.2	95.0	Pass
595	ME 25+00 DS	954.0	<u>s</u>	0.2	2094	9.1	2043	11.3	97.5	95.0	Pass
596	ME 25+50 US	954.0	S	0.2	2094	9.1	2034	11.1	97.1	95.0	Pass
597	ME 26+35 DS	954.0	S	0.2	2094	9.1	1999	12.1	95.4	95.0	Pass
598	ME 26+75 C	954.0	S	0,2	2094	9.1	2028	11.8	96.8	95.0	Pass
599	ME 26+75 DS	953.3	S	0.2	2094	9.1	2067	11.2	98.7	95.0	Pass
600 601	ME 27+00C ME 27+50 US	954.0 954.0	S	0.2	2094	9.1	2040	11.2	97.4	95.0	Pass
602	ME 27+50 US PE 28+00 DS	954.0 954.0	S	0.2 0.2	2094	9.1	2018	12.0	96,4	95.0	Pass
603	PE 28+00 DS	954.0	S	0.2	2094 2094	9.1 9.1	2056 2060	10.6	98.2	95.0 95.0	Pass
604	PE 29+00 DS	954.0	S	0,2	2094	9.1	2024	11.5	98.4 96.6	95.0 95.0	Pass Pass
605	PE 29+50 US	954.0	S	0.2	2094	9.1	2032	11.5	97.0	95.0	Pass
606	PE 30+00 C	954.0	S	0.2	2094	9.1	2047	11.5	97.7	95.0	Pass
	PE 30+50 US	953.8	S	0.2	2094	9.1	2052	11.0	98.0	95.0	Pas

Revd 4-Dec-08

FIELD COMPACTION TESTS (Metric)

PROJECTNO: 101.0123

Wmin!	rt Piés	es I el	FIEL	_D COMPA	CTION T	ESTS (Me	etric)		PROJECT NO.:		101-01/23
1318181	PE T PON	rine Cine		NUCL	EAR GA	JGE			DATE:	May to Oc	tober 2008
								·····	T	T	
TEST NO.	Location	Elevation	Zone	Test	Max. Dry	Optimum	Dry	Moisture		Compaction	Pass
		(m)		Depth	Density	Moisture	Density (kg/m ³)	Content	Compaction	Specification	or
222	DE 04:00 DE	052.0		(m)	(kg/m³)	(%)	(kg/m³) 2009	(%) 12,3	(%) 95.9	(%) 95.0	(%) Pass
608 609	PE 31+00 DS PE 31+50 C	953.8 953.4	S S	0.2 0.2	2094 2094	9.1 9.1	2009	11.3	96.8	95.0	Pass
610	PE 32+50 C	952.9	s	0.2	2094	9.1	2039	11.5	97.4	95.0	Pass
611	PE 33+00 DS	953.2	S	0.2	2094	9.1	2052	10.5	98,0	95.0	Pass
612	PE 33+50 US	953.2	S	0.2	2094	9.1	2007	11.5	95.8	95.0	Pass
613 614	PE 34+00 C PE 34+50 C	953.2 953.2	S S	0.2	2094 2094	9.1 9.1	2006	11.4 10.7	95.8 97.3	95.0 95.0	Pass Pass
615	PE 36+25 DS	953.2	S	0.2	2094	9.1	2026	10.5	96.7	95.0	Pass
616	PE 35+75 C	953.2	S	0.2	2094	9.1	2049	11.0	97.8	95.0	Pass
617	PE 35+25 US	953.2	S	0.2	2094	9.1	2045	10.4	97.6	95.0	Pass
618 619	PE 37+00 C	953.2 953.2	S	0,2 0.2	2094 2094	9.1 9.1	2040 2018	10.3 10.9	97.4 96.4	95.0 95.0	Pass Pass
620	PE 37+50 US ME 22+50 C	953.2 954.0	S	0.2	2094	9.1	2018	10.3	98.4	95.0	Pass
621	ME 23+00 C	954.0	Š	0.2	2094	9.1	2022	10.5	96.5	95.0	Pass
622	ME 24+50 C	954.0	S	0.2	2094	9.1	2026	10.7	96.7	95.0	Pass
623	ME 24+75 US	954.0	S	0.2	2094	9.1	2017	10.4	96.3	95.0	Pass
624 625	ME 25+25 DS ME 25+75 C	954.0 954.0	S	0.2	2094 2094	9.1 9.1	2018 2052	11.2 11.0	96.4 98.0	95,0 95,0	Pass Pass
626	ME 26+25 US	954.0	S	0.2	2094	9.1	2018	11.6	96.4	95.0	Pass
627	ME 26+75 US	954.0	s	0.2	2094	9.1	2029	10.9	96.9	95.0	Pass
628	ME 27+25 C	954.0	S	0.2	2094	9.1	2064	10.3	98.5	95.0	Pass
629	PE 29+70 DS	954.0	S	0.2	2094	9.1	2041	11.0	97.5	95.0	Pass
630	PE 30+15 US	954.0 954.0	S	0.2 0.2	2094 2094	9,1 9,1	2027	10.7	96.8 97.0	95.0 95.0	Pass Pass
631 632	PE 31+25 US PE 31+75 DS	954.0 953.2	S	0.2	2094	9.1	2031	11.1	95.5	95.0	Pass
633	PE 32+25 C	953.5	s	0.2	2094	9.1	2017	10.2	96.3	95.0	Pass
634	PE 32+75 DS	954.0	Š	0.2	2094	9.1	2007	10.2	95.8	95.0	Pass
635	PE 33+25 C	954.0	S	0.2	2094	9.1	2003	10.2	95.6	95.0	Pass
636	PE 34+25 DS	953.7	S	0.2	2094	9.1	2021 2016	11.3 10.2	96.5	95.0 95.0	Pass
637 638	PE 34+75 US PE 35+75 DS	953.7 953.7	S	0.2	2094 2094	9.1 9.1	1992	11.4	96,3 95.1	95.0	Pass Pass
639	PE 36+75 US	953.7	s	0.2	2094	9.1	2009	10.6	95.9	95.0	Pass
640	PE 36+25 DS	954.0	S	0.2	2094	9.1	2006	10.5	95.8	95.0	Pass
641	PE 39+75W	951.3	S	0.2	2094	9.1	2049	9,1	97.8	95.0	Pass
642	PE 40+25W	951.3	S	0.2	2094	9.1	2194	8.3	104.8	95.0	Pass
643	PE 40+75W	951.3	S	0.2	2094 2094	9.1 9.1	2044 2066	9.8 9.6	97.6 98.6	95.0 95.0	Pass Pass
644 645	PE 41+25W PE 41+75W	951.3 951.3	8	0.2	2094	9.1	2066	9.9	98.6	95.0	Pass
646	PE 37+25W	953.7	Š	0,2	2094	9.1	2009	12.2	95.9	95.0	Pass
647	PE 37+75 C	952.3	S	0.2	2094	9.1	1996	11.3	95.3	95,0	Pass
648	PE 38+75W	952.0	S	0.2	2094	9.1	2007	11.4	95.8	95.0	Pass
649	PE 39+25W	951.6	<u> </u>	0.2	2094	9.1	2026	10.9	96.7	95.0	Pass
650 651	PE 39+75W PE 40+75W	951.6 951.6	S S	0.2 0.2	2094 2094	9.1 9.1	2018 2012	11.0 11.5	96.4 96.1	95.0 95.0	Pass Pass
652	PE 41+25W	951.6	s	0.2	2094	9,1	2005	12.1	95.7	95,0	Pass
653	ME 26+50 C	954.0	S	0.2	2094	9.1	2016	10.7	96.3	95.0	Pass
654	PE 30+40 DS	954.0	S	0.2	2094	9.1	2042	10.3	97.5	95.0	Pass
655	PE 30+90 DS	954.0	S	0.2	2094	9.1	1992	11.7	95.1	95.0	Pass
656 657	PE 31+50 C PE 32+00 C	954.0 953.8	S	0.2	2094 2094	9.1 9.1	2006 2065	11.7	95.8 98.6	95.0 95.0	Pass Pass
658	PE 33+50 C	954.0	Š	0.2	2094	9.1	1993	12.0	95.2	95,0	Pass
659	PE 35+00 C	954.0	S	0.2	2094	9.1	1997	12.3	95.4	95.0	Pass
660	PE 35+50 DS	954.0	S	0.2	2094	9.1	2011	11.6	96.0	95.0	Pass
661	PE 36+25 US	954.0	S	0.2	2094	9.1	2080	10.7	99.3 96.1	95.0 95.0	Pass Pass
662 663	PE 32+50 C PE 37+00 C	954.0 954.0	S S	0.2 0.2	2094 2094	9.1 9.1	2012	11.7	95.5	95.0	Pass
664	PE 37+50 US	954.0	Š	0.2	2094	9.1	2028	10.9	96.8	95.0	Pass
665	PE 42+25 CL	951.3	S	0.2	2094	9,1	2079	10.1	99.3	95.0	Pass
666	PE 42+75 CL	951,2	S	0.2	2094	9.1	2029	11.2	96.9	95.0	Pass
667	PE 43+25 US	951.2	S	0.2	2094	9.1	1999 2049	10.8 11.1	95.4 97.8	95.0 95.0	Pass Pass
668 669	PE 43+50 CL PE 44+25 CL	951.1 951.3	S	0.2	2094 2094	9,1 9,1	2049	10.7	100.0	95.0	Pass
670	PE 44+50 DS	951.2	s	0.2	2094	9.1	2030	11.4	96.9	95.0	Pass
671	PE 42+25 DS	951.6	S	0.2	2094	9.1	2028	11.9	96.8	95.0	Pass
672	PE 43+25 CL	951.8	S	0.2	2094	9.1	2013	10.9	96.1	95.0	Pass
673	PE 44+00 US	951.5	S	0.2	2094	9.1	2023	10.8	96.6	95.0	Pass
674 675	PE 45+00 CL PE 45+50 US	951.1 951.0	S	0.2 0.2	2094 2094	9.1 9.1	2092 2195	9.8	99.9 104.8	95.0 95.0	Pass Pass
676	PE 45+85 CL	951.0	S	0.2	2094	9.1	2045	9.3	97.6	95.0	Pass
677	PE 42+25 US	951.8	S	0.2	2094	9.1	2018	11.8	96.4	95.0	Pass
678	PE 42+75 DS	951.7	\$	0.2	2094	9.1	2064	10.6	98.5	95.0	Pass
679	PE 43+25 CL	952.0	S	0,2	2094	9.1	2046	10.4	97.7	95.0	Pass
680	PE 43+75 DS	951,8 951.8	S	0.2	2094 2094	9.1 9.1	2018 2090	11.2	96.4 99.8	95.0 95.0	Pass Pass
681 682	PE 44+25 US PE 44+75 US	951.8	S	0.2	2094	9.1	2047	10.4	97.7	95.0	Pass
683	PE 45+25 CL	951.4	s	0.2	2094	9.1	1997	11.4	95.4	95.0	Pass
684	PE 44+75 CL	951.5	Š	0.2	2094	9.1	2018	11.3	96.4	95,0	Pass
685	PE 37+50 US	953.5	S	0.2	2094	9.1	1992	11.5	95,1	95,0	Pass
686	PE 38+00 DS	952.7	S	0.2	2094	9.1	2077	10.2	99.2	95.0	Pass
687	PE 38+50 CL	952.8	S	0.2	2094	9.1	2013	10.9	96.1	95.0	Pass
688	PE 39+00 US	952.6 952.0	S	0.2	2094 2094	9,1	2008 1997	9.9	95.9 95.4	95.0 95.0	Pass Pass
689 690	PE 39+50 CL PE 40+00 DS	952.0 951.9	S	0.2	2094	9.1	2105	8.7	100.5	95.0	Pass
691	PE 40+50 US	951.6	s	0.2	2094	9.1	2091	8.7	99.8	95.0	Pass
692	PE 41+00 CL	952.0	Š	0.2	2094	9.1	2126	8.6	101.5	95.0	Pass
693	PE 41+50 DS	951.9	S	0.2	2094	9.1	2045	9.1	97.6	95.0	Pass
694	PE 42+00 DS	951,9	S	0.2	2094	9.1	2079	9.6	99.3	95.0	Pass

Rev'd 4-Dec-08

Kniel	ht Piés	old	FIE	LD COMPA		-	etric)		PROJECT NO.:		101-01/23
	COMBUL	TIME	r	NUC	LEAR GA	UGE	T		DATE:	May to Oc	tober 2008
TEST NO.	Location	Elevation (m)	Zone	Test Depth	Max. Dry Density	Optimum Moisture	Dry Density	Moisture Content	Compaction	Compaction Specification	Pass or
		` ´		(m)	(kg/m ³)	(%)	(kg/m³)	(%)	(%)	(%)	(%)
695	PE 42+50 US	952.1	S	0.2	2094	9.1	2105	8.5	100.5	95.0	Pass
696 697	PE 43+00 DS PE 43+50 CL	952.3 952.3	<u>s</u>	0.2	2094	9.1	2026	10.4	96.7	95.0	Pass
698	PE 44+00 CL	952.3	S S	0.2	2094 2094	9,1 9,1	2088 2071	8.5 9.6	99.7	95.0 95.0	Pass
699	PE 45+00 US	951.9	S	0.2	2094	9,1	2050	9.4	97.9	95.0	Pass Pass
700	PE 45+50 US	951.8	S	0.2	2094	9.1	2049	10.8	97.8	95.0	Pass
701	PE 44+50US	952.1	S	0.2	2094	9.1	2074	9.7	99.0	95.0	Pass
702	PE 37+50 DS	952.9	S	0.2	2094	9.1	2039	10.1	97.4	95.0	Pass
703	PE 38+25 DS	952.9	<u>s</u>	0.2	2094	9,1	2002	11.3	95.6	95.0	Pass
704 705	PE 38+75 CL PE 39+25 US	953.0 952.5	S S	0.2	2094 2094	9.1 9.1	2023	10.4	96.6	95.0	Pass
706	PE 39+75 US	952.4	S	0.2	2094	9.1	1993 2028	11.6 11.3	95.2 96.8	95.0 95.0	Pass Pass
707	PE 40+25 CL	952.3	S	0.2	2094	9.1	2023	11.7	96.6	95.0	Pass
708	PE 40+75 DS	952.2	S	0.2	2094	9.1	2003	12.3	95.6	95.0	Pass
709	PE 41+25 DS	952.1	S	0.2	2094	9.1	2034	11.2	97.1	95.0	Pass
710	PE 41+75 DS	952.0	<u>s</u>	0.2	2094	9.1	2016	11.5	96.3	95.0	Pass
711 712	PE 42+25 US PE 42+75 CL	952.2 952.4	<u>s</u>	0.2	2094	9.1	2041	10.8	97.5	95.0	Pass
713	PE 43+25 DS	952.5	S	0.2	2094 2094	9.1 9.1	2042 2036	11.8 11.2	97.5 97.2	95.0 95.0	Pass Pass
714	PE 44+25 CL	952.2	s s	0.2	2094	9.1	2017	10.6	96.3	95.0	Pass
715	PE 44+75US	952.2	Š	0.2	2094	9.1	2014	11.7	96.2	95.0	Pass
716	PE 45+25 DS	952.0	S	0.2	2094	9.1	2036	11.2	97.2	95,0	Pass
717	PE 37+50 CL	953.7	S	0.2	2094	9.1	2117	9,1	101.1	95.0	Pass
718	PE 38+00 US	953.2	<u>S</u>	0.2	2094	9.1	2032	10.8	97.0	95.0	Pass
719 720	PE 38+50 DS PE 39+00 CL	953.3 953.2	S S	0.2	2094 2094	9.1 9.1	2023 2061	10.1 8,8	96.6	95.0	Pass
720	PE 39+50 US	953.2	S	0.2	2094	9.1	2009	10.6	98.4 95.9	95.0 95.0	Pass Pass
722	PE 40+00 CL	952.4	s	0.2	2094	9.1	2080	10.1	99.3	95.0	Pass
723	PE 40+50 US	952.4	S	0.2	2094	9.1	2032	10.9	97.0	95.0	Pass
724	PE 41+00 DS	952.2	S	0.2	2094	9.1	2099	10.5	100.2	95.0	Pass
725	PE 41+50 CL	952.3	<u>\$</u>	0,2	2094	9.1	1994	12.3	95.2	95.0	Pass
726 727	PE 42+00 DS PE 42+50 US	952.0	<u>S</u>	0.2	2094	9.1	2076	10.0	99.1	95.0	Pass
728	PE 43+00 DS	952.4 952.7	S S	0.2	2094 2094	9.1 9.1	1997 2123	12.2 9.7	95.4 101.4	95.0 95.0	Pass
729	PE 43+50 CL	952.7	s	0.2	2094	9.1	2062	9.7	98.5	95.0	Pass Pass
730	PE 44+00 US	952.5	Š	0.2	2094	9.1	2047	9.7	97.7	95.0	Pass
731	PE 44+50 CL	952.2	S	0.2	2094	9.1	2086	9.9	99.6	95.0	Pass
732	PE 45+50 DS	952.2	S	0.2	2094	9.1	2040	11.0	97.4	95.0	Pass
733	ME 16+00 DS	950.8	<u>s</u>	0.2	2094	9.1	2051	10.9	97.9	95.0	Pass
734 735	ME 16+50 DS ME 17+00 DS	951.1 951.1	S S	0.2	2094	9.1	2032	10.5	97.0	95.0	Pass
736	PE 31+25 US	953.8	<u>s</u>	0.2 0.2	2094 2094	9,1 9,1	2059 1998	10.3 12.7	98.3 95.4	95.0 95.0	Pass Pass
737	PE 32+25 DS	953.9	s	0.2	2094	9.1	2037	11.6	97.3	95.0	Pass
738	PE 32+70 C	953.9	S	0.2	2094	9.1	1995	11.2	95.3	95.0	Pass
739	PE 33+50 C	954.1	S	0.2	2094	9,1	2042	11.6	97.5	95.0	Pass
740	ME 17+50 DS	951.2	S	0.2	2094	9.1	2094	10.4	100,0	95.0	Pass
741	ME 18+00 DS	951.2	s	0.2	2094	9.1	2092	9.7	99.9	95.0	Pass
742 743	ME 18+50 DS ME 19+00 DS	951.5 951.4	S S	0.2 0.2	2094 2094	9,1 9,1	2088 2034	9,9 10,5	99.7	95.0	Pass
744	ME 19+50 DS	951.4	S	0.2	2094	9.1	2022	9.3	96.5	95.0 95.0	Pass Pass
745	ME 16+25 DS	951.3	S	0.2	2094	9.1	2013	11.5	96.1	95.0	Pass
746	ME 16+75DS	951.5	S	0.2	2094	9.1	2022	10.0	96,5	95.0	Pass
747	ME 17+25DS	951.4	S	0.2	2094	9.1	2018	11.2	96.4	95.0	Pass
748	ME 17+75DS	951.4	<u>s</u>	0.2	2094	9.1	2092	9.8	99.9	95.0	Pass
749 750	ME 18+25DS	951.6 951.6	<u> </u>	0.2	2094	9.1	2073	10.7	99.0	95.0	Pass
750 751	ME 18+75DS ME 19+25DS	951.6 951.7	S S	0.2 0.2	2094 2094	9.1 9.1	1991 2044	12.0 12.3	95.1 97.6	95.0 95.0	Pass
752	ME 19+70DS	951.7	S	0.2	2094	9.1	2006	12.3	95.8	95.0	Pass Pass
753	ME 19+85DS	951.3	s	0.2	2094	9.1	2037	8.8	97.3	95.0	Pass
754	ME 20+25DS	950.9	S	0.2	2094	9.1	2129	10.3	101.7	95.0	Pass
755	ME 20+75DS	951.0	<u>s</u>	0.2	2094	9.1	2022	8.9	96.5	95.0	Pass
756	ME 16+50DS	951.8	<u> </u>	0.2	2094	9.1	2017	11.2	96.3	95.0	Pass
757 758	ME 17+00 DS ME 17+50 DS	951.9 951.8	S	0.2 0.2	2094 2094	9.1 9.1	2015 2016	10.5 10.7	96.2 96.3	95.0 95.0	Pass
759	ME 18+00 DS	951.8	S	0.2	2094	9.1	1994	10.7	95.2	95.0 95.0	Pass Pass
760	ME 18+50 DS	952.1	S	0.2	2094	9.1	2040	10.0	97.4	95.0	Pass
761	ME 19+00 DS	952.0	S	0.2	2094	9.1	2007	11.5	95.8	95.0	Pass
762	ME 19+50 DS	951.9	S	0.2	2094	9.1	2067	9.3	98.7	95.0	Pass
763	ME 20+50 DS	951.2	S	0.2	2094	9.1	2091	8.6	99.8	95.0	Pass
764	ME 20+75 DS	951.4	<u> </u>	0.2	2094	9.1	2078	8.9	99.2	95.0	Pass
765 766	PE 37+75 DS PE 38+25 DS	953.3 953,4	S S	0.2 0.2	2094	9.1	2033	9.6	97.1	95.0	Pass
767	PE 38+25 DS	953,4	S	0.2	2094 2094	9.1 9.1	2080 2080	8.5 9.5	99.3 99.3	95.0 95.0	Pass
768	PE 39+25 DS	953.0	S	0.2	2094	9.1	2086	9.3	99.6	95.0	Pass Pass
769	PE 39+75 DS	952.9	S	0.2	2094	9.1	2132	7.7	101.8	95.0	Pass
770	ME 16+25 US	952.0	S	0.2	2094	9,1	2086	10,1	99.6	95.0	Pass
771	ME 16+75 C	952.2	S	0.2	2094	9.1	2083	10.2	99.5	95.0	Pass
772	ME 17+25 DS	952.2	S	0.2	2094	9.1	2099	9,6	100.2	95.0	Pass
773	ME 17+75 US	952.1	S	0.2	2094	9.1	2085	9.5	99.6	95.0	Pass
774	ME 18+25 C	952.3	S	0.2	2094	9.1	2080	10.6	99.3	95.0	Pass
775 776	ME 18+75 C ME 19+25 US	952.5 952.4	S	0.2 0.2	2094	9.1	2071	10.5	98.9	95.0	Pass
777	ME 19+25 US ME 19+75 DS	952.4	S S	0.2	2094 2094	9.1 9.1	2091 2103	10.8 10.8	99,8	95.0 95.0	Pass
778	ME 20+25 DS	951.3	S	0.2	2094	9,1	2031	10.8	97.0	95.0 95.0	Pass Pass
779	ME 20+75 DS	951.5	S	0.2	2094	9.1	2038	10.8	97.3	95.0	Pass
780	ME 20+75 DS	951.8	S	0.2	2094	9.1	2047	10.1	97.7	95.0	Pass
781	ME 20+25 DS	951.6	S	0.2	2094	9.1	2063	10.5	98.5	95.0	Pass

V	L & TOP An	~7~7	FIEL	D COMPA	CTION TE	ESTS (Me	tric)		PROJECT NO .:		101-01/23
virk	ht Piés	VW.			LEAR GAU	-	•		DATE:	May to Oct	ober 2008
TEST NO.	Location	Elevation (m)	Zone	Test Depth	Max. Dry Density	Optimum Moisture	Dry Density	Moisture Content	Compaction	Compaction Specification	Pass or
				(m)	(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	(%)
782	ME 16+25 US	952.4	S	0.2	2094	9.1	2045	10.3	97.6	95.0	Pass
783 784	ME 16+75 C ME 17+25 US	952.5 952.5	S S	0.2	2094 2094	9.1 9.1	2127 2137	8.9 9.2	101.6 102.0	95.0 95.0	Pass Pass
785	ME 17+75 DS	952.4	ŝ	0.2	2094	9.1	2092	10.2	99.9	95.0	Pass
786	ME 18+25 C	952.6	S	0.2	2094	9.1	2131	9.6	101.7	95,0	Pass
787	ME 18+75 US	952.8	S	0.2	2094	9.1	2117	9.6	101.1	95.0	Pass
788 789	ME 19+25 C ME 19+75 DS	952.3 952.8	S S	0.2 0.2	2094 2094	9.1 9.1	2142 2163	8.5 8.5	102.3	95.0 95.0	Pass Pass
790	ME 20+25 DS	951.9	- <u>s</u>	0.2	2094	9.1	2149	7.7	102.6	95.0	Pass
791	ME 20+75 DS	952.2	S	0.2	2094	9.1	2083	9.3	99.5	95.0	Pass
792	PE 40+25 CL	952.7	<u>s</u>	0.2	2094	9.1	2014	9.3	96.2	95,0	Pass
793 794	PE 41+75 DS PE 42+25 CL	952.6 952.7	S S	0,2 0,2	2094 2094	9.1 9.1	2076 2049	9.3 9.9	99.1 97.8	95.0 95.0	Pass Pass
795	PE 42+75 DS	952.9	s	0.2	2094	9.1	2041	9.8	97.5	95.0	Pass
796	PE 43+25 DS	953.1	S	0,2	2094	9.1	2052	9.5	98.0	95.0	Pass
797	ME 16+00 DS	951.2	S	0.2	2094	9.1	2043	9.8	97.5	95.0	Pass
798	SE 15+50 DS	951.2	<u> </u>	0.2	2094	9.1	2086	10.5	99.6	95.0	Pass
799 800	SE 15+00 DS SE 14+50 DS	951.3 951.2	S S	0.2	2094 2094	9.1 9.1	2033 2001	8.9 10.2	97.1 95.5	95.0 95.0	Pass Pass
801	SE 14+00 DS	951.2	s	0.2	2094	9.1	2105	9.2	100.5	95,0	Pass
802	PE 43+75 DS	952,8	S	0.2	2094	9.1	2055	9.7	、98.1	95.0	Pass
803	PE 44+25 CL	952.9	S	0.2	2094	9.1	2086	9.7	99.6	95.0	Pass
804 805	ME 20+75 DS	952.5 952.2	S S	0.2	2094	9.1 9.1	2053 2075	9,8	98.0 99.1	95.0 95.0	Pass Pass
805	ME 20+25 CL ME 19+75 DS	952.2	S	0.2	2094	9.1	2132	9.5	101.8	95.0	Pass
807	ME 19+25 CL	952.9	Š	0.2	2094	9.1	2064	9,0	98.5	95.0	Pas
808	ME 18+75 DS	953.0	S	0.2	2094	9.1	2142	8.9	102.3	95.0	Pass
809	ME 18+25 US	952.9	S	0,2	2094	9.1	2114	9.4	100.9	95.0	Pass
810 811	ME 17+75 US ME 17+25 DS	952.7 952.8	S S	0.2	2094 2094	9.1 9.1	2000 2058	9.0 8.3	95.5 98.3	95.0 95.0	Pas:
812	ME 16+75 CL	952.9	S	0.2	2094	9.1	2136	8.5	102.0	95.0	Pass
813	ME 16+25	952.7	S	0,2	2094	9.1	2068	8.1	98.7	95.0	Pass
814	SE 13+25 DS	951.4	S	0.2	2094	9.1	2074	9.8	99.0	95.0	Pas
815	SE 13+75 DS	951.3	<u>s</u>	0.2	2094	9.1	2030	8.4	96,9	95.0	Pass
816 817	ME 20+75 CL ME 20+25 US	952.6 952.6	S S	0.2 0.2	2094 2094	9.1 9.1	2138 2091	9.3	102.1 99.8	95.0 95.0	Pass Pass
818	ME 16+00 DS	951.6	S	0.2	2094	9.1	2069	10.5	98.8	95.0	Pas
819	SE 15+50 DS	951.5	S	0.2	2094	9,1	2071	9.8	98.9	95.0	Pas
820	PE 44+75 DS	952.3	S	0.2	2094	9.1	2154	7.8	102.8	95.0	Pass
821	PE 45+25 DS	952.4	8	0.2	2094	9.1	2030	9.5	96.9	95.0	Pass
822 823	SE 15+00 DS	951.8 951.7	S S	0.2	2094 2094	9.1 9.1	2088	10.4 11.0	99.7 98.6	95.0 95.0	Pass
824	SE 14+50 DS SE 14+00 DS	951.7	S	0.2	2094	9,1	2049	11.0	97.8	95.0	Pas
825	SE 13+50 DS	951.6	S	0.2	2094	9.1	2087	10.1	99.6	95.0	Pas
826	SE 13+00 DS	951.5	S	0.2	2094	9.1	2035	10.7	97.2	95.0	Pas
827	ME 19+75 US	953.1	S	0.2	2094	9.1	2065	10.5	98.6	95.0	Pas
828	ME 19+25 CL	953,3 952.0	S S	0,2 0,2	2094 2094	9.1 9.1	2082 2213	9,2	99.4 105.7	95.0 95.0	Pas
829 830	ME 16+00 CL SE 15+50 CL	951.9	S	0.2	2094	9.1	2044	10.3	97.6	95.0	Pas Pas
831	SE 15+00 DS	952.0	S	0.2	2094	9.1	2033	9.9	97.1	95.0	Pas
832	ME 18+75 US	953.4	S	0.2	2094	9.1	2117	9.2	101.1	95.0	Pas
833	ME 18+25 US	953.2	S	0.2	2094	9.1	2089	10.1	99.7	95.0	Pas
834 835	ME 17+75 DS ME 17+25 CL	953.1 953.0	S	0.2 0.2	2094 2094	9.1 9.1	2038 2104	10.1 9.9	97.3	95.0 95.0	Pas Pas
836	ME 16+75 US	953.2	s	0.2	2094	9.1	2102	9.7	100.4	95.0	Pas
837	SE 12+50 DS	951.4	S	0.2	2094	9.1	2105	9.4	100.5	95.0	Pas
838	SE 12+00 DS	951.4	S	0.2	2094	9.1	2206	8.2	105.3	95.0	Pas
839 840	SE 11+50 DS SE 14+50 DS	951.2 952.0	S	0.2	2094 2094	9.1 9.1	2057 2031	10.0	98.2 97.0	95.0 95.0	Pas Pas
840	SE 14+50 DS	952.0	S	0.2	2094	9.1	2078	10.0	99.2	95.0	Pas
842	SE 13+50 DS	951.8	S	0.2	2094	9.1	2113	8.9	100.9	95,0	Pas
843	SE 13+00 DS	951.8	S	0.2	2094	9.1	2085	9.0	99.6	95.0	Pas
844	SE 11+00 DS	951.1	S	0.2	2094	9.1	2063	8.4	98.5	95.0	Pas
845 846	SE 10+50 DS SE 10+00 DS	951.2 951.3	S	0.2 0.2	2094 2094	9.1 9.1	2041 2134	9.0 7.9	97.5 101.9	95.0 95.0	Pas
847	SE 12+00 DS	951.7	8	0.2	2094	9.1	2053	10.7	98.0	95.0	Pas
848	ME 20+00 DS	951.3	S	0.2	2094	9.1	2124	8.7	101.4	95.0	Pas
849	ME 19+50 US	952.9	S	0.2	2094	9.1	2054	9.6	98.1	95.0	Pas
850 851	SE 11+50 DS SE 11+00 DS	951.4 951.4	S S	0.2 0.2	2094 2094	9.1	2031 2124	10.1 8.8	97.0 101.4	95.0 95.0	Pas
852	SE 10+50 DS	951.4	S	0.2	2094	9.1	2123	8.3	101.4	95.0	Pas
853	SE 10+00 DS	951.5	S	0.2	2094	9.1	2094	9.2	100.0	95.0	Pas
854	SE 12+50 DS	951.6	S	0.2	2094	9.1	2014	11.9	96.2	95.0	Pas
855	ME 20+75 DS	952.8	S	0.2	2094	9.1	2110	9.5	100.7	95.0	Pas
856	ME 20+25 US	952.8	S	0.2	2094	9.1	2051	9.1	97.9	95.0	Pas
857 858	ME 19+00 CL ME 18+50 DS	953.7 953.7	S S	0.2 0.2	2094 2094	9.1 9.1	2034 2077	10.6 9.8	97.1 99.2	95.0 95.0	Pas Pas
859	ME 18+00 US	953.4	S	0.2	2094	9.1	2089	10.2	99.7	95.0	Pas
860	ME 16+50	953.2	S	0.2	2094	9.1	2024	10.0	96.6	95.0	Pas
861	ME 16+00	952.2	S	0.2	2094	9,1	2083	9.5	99.5	95.0	Pas
862	SE 15+50 DS	952.1	S	0.2	2094	9.1	2079	10.2	99,3	95,0	Pas
863	SE 15+00 CL	952.0	S	0.2	2094	9.1	2091	10.1	99.8	95.0	Pas
864	SE 14+50 US SE 14+00 CL	951.2 952.0	S S	0.2 0.2	2094	9.1	2058 2040	10.0	98.3 97.4	95.0 95.0	Pas
865 866	SE 13+50 DS	952.0	S	0.2	2094	9.1	2040	11.6	95.8	95.0	Pas Pas
867	SE 13+00 DS	952.0	Š	0.2	2094	9.1	2097	9.0	100.1	95.0	Pas
	SE 12+50 DS	951.4	S	0.2	2094	9.1	2124	9.5	101.4	95.0	Pas

Revd 4-Dec-08

Kmia	ht Piés	mId	FIE	LD COMPA	ACTION T	ESTS (Me	etric)		PROJECT NO.:		101-01/23
5 1 1 2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	COMBUT.	TIME		NUC	LEAR GA	UGE			DATE:	May to Oc	tober 2008
						1		T	1	1	
TEST NO.	Location	Elevation	Zone	Test	Max. Dry	Optimum	Dry	Moisture	0	Compaction	Pass
		(m)	i	Depth (m)	Density (kg/m ³)	Moisture (%)	Density (kg/m ³)	Content (%)	Compaction (%)	Specification (%)	or (%)
869	SE 12+00 DS	952.0	s	0.2	2094	9.1	2014	10.7	96.2	95.0	Pass
870	SE 11+50 DS	951.7	S	0.2	2094	9.1	2056	10.0	98.2	95.0	Pass
871	SE 10+00 DS	951.7	S	0.2	2094	9.1	2070	9.9	98,8	95.0	Pass
872	SE 10+50 DS	951.8	S	0.2	2094	9.1	2187	9.5	104.4	95.0	Pass
873 874	SE 10+00 DS ME 20+75 US	951.8 953.1	S S	0.2	2094 2094	9.1 9.1	2073 2026	10.7 9.8	99.0 96.7	95.0 95.0	Pass Pass
875	ME 20+25 CL	953.1	Š	0.2	2094	9.1	2069	9.5	98.8	95.0	Pass
876	ME 19+75 DS	953.5	S	0.2	2094	9.1	2004	10.9	95.7	95.0	Pass
877	ME 19+25 US	953.6	S	0.2	2094	9.1	2036	11.3	97.2	95.0	Pass
878 879	ME 18+75 DS ME 18+25 CL	954.1 953.5	S	0.2	2094 2094	9.1 9.1	2065 2020	11.0 11.3	98.6 96.4	95.0 95.0	Pass
880	ME 16+75 US	953.5	s	0.2	2094	9.1	2032	11.3	97.0	95.0	Pass Pass
881	ME 17+25 US	953.5	S	0.2	2094	9.1	2009	12.5	95.9	95.0	Pass
882	ME 16+25 CL	952.9	S	0.2	2094	9.1	2045	10.9	97,6	95.0	Pass
883	PE 37+75 CL	953.7	S	0.2	2094	9.1	2091	8.5	99.8	95,0	Pass
884 885	PE 38+25 DS ME 20+75 US	953.7 953.2	S	0.2 0.2	2094 2094	9.1 9.1	2011 2028	8.2 11.8	96.0 96.8	95.0 95.0	Pass
886	ME 20+25 US	953.2	S	0.2	2094	9.1	2040	12.4	97.4	95.0	Pass Pass
887	ME 19+75 US	953.5	S	0.2	2094	9.1	2028	11.5	96.8	95.0	Pass
888	ME 19+25 DS	954.0	S	0.2	2094	9.1	2064	10,0	98.5	95.0	Pass
889	ME 18+75 CL	954.0	S	0.2	2094	9.1	2040	11.5	97.4	95.0	Pass
890 891	ME 18+25 CL ME 17+75 US	953.6 953.6	S	0.2	2094 2094	9.1 9.1	1995 2100	12.6 11.8	95.3	95.0 95.0	Pass
892	ME 17+75 DS	953.6	S	0.2	2094	9.1	1992	11.8	95.1	95.0	Pass Pass
893	ME 16+75 CL	953.5	Š	0.2	2094	9.1	2026	11.8	96.7	95.0	Pass
894	ME 16+25 US	953.1	S	0.2	2094	9.1	2072	10.6	98.9	95.0	Pas
895	ME 20+75 US	953.1	S	0.2	2094	9.1	2001	11.2	95.5	95.0	Pas
896 897	ME 20+25 CL ME 19+75 DS	935.3 953.8	S	0.2	2094 2094	9.1 9.1	2016 1995	11.5 10.9	96.3 95.3	95.0	Pass
898	ME 19+25	954.0	s	0.2	2094	9.1	2001	10.9	95.5	95.0 95.0	Pass Pass
899	ME 18+50	954.0	š	0.2	2094	9.1	2045	10.2	97.6	95,0	Pass
900	ME 18+00 DS	954.0	S	0,2	2094	9,1	2017	12.1	96.3	95.0	Pass
901	ME 17+50 DS	954.0	S	0.2	2094	9.1	1991	11.9	95.1	95.0	Pass
902	ME 17+00 CL ME 16+50 CL	953.6 953.7	S S	0.2	2094	9.1	1995	12.4	95.3	95.0	Pass
903	ME 20+75 US	953.6	S	0.2 0.2	2094 2094	9.1 9.1	2042 2010	12.8 12.3	97.5 96.0	95.0 95.0	Pass Pass
905	ME 19+75 US	954.0	š	0.2	2094	9.1	2014	11.5	96.2	95.0	Pass
906	ME 16+00 DS	952.5	S	0.2	2094	9.1	2013	9.3	96.1	95.0	Pass
907	PE 38+75 US	953.9	S	0.2	2094	9.1	2055	7.2	98.1	95.0	Pass
908	PE 39+25 CL	953.3	S	0.2	2094	9.1	2040	7.7	97.4	95.0	Pass
909 910	PE 39+75 PE 40+25 US	953.2 953.0	S S	0.2 0.2	2094 2094	9.1 9.1	2154 2097	7.6 7.9	102.8	95.0 95.0	Pass Pass
911	PE 40+75 DS	953.0	š	0.2	2094	9.1	2087	8.3	99.6	95.0	Pass
912	PE 41+25 CL	952.8	S	0.2	2094	9.1	2055	8.2	98.1	95.0	Pass
913	PE 41+75 US	952.8	S	0.2	2094	9.1	2078	7,5	99.2	95.0	Pass
914	PE 42+25	952.8	<u> </u>	0.2	2094	9,1	2201	7.7	105.1	95.0	Pass
915 916	PE 42+75 SE 15+50	953.2 952.3	S S	0.2	2094 2094	9.1 9.1	2119 2017	8.1 11.2	101.2 96.3	95.0 95.0	Pass Pass
917	SE 14+50	952.5	s	0.2	2094	9.1	2006	11.3	95.8	95.0	Pass
918	ME 16+50	953.9	S	0.2	2094	9.1	2046	10.7	97.7	95.0	Pass
919	ME 17+00	953.9	S	0.2	2094	9.1	2116	9.6	101.0	95.0	Pass
920	ME 20+75	953.9	S	0.2	2094	9.1	2062	10.7	98.5	95.0	Pass
921 922	ME 20+25 SE 15+00 CL	953.9 952.4	S S	0.2 0.2	2094 2094	9.1 9.1	2013 2011	12.4 11.6	96.1 96.0	95.0 95.0	Pass Pass
923	PE 43+25	953.1	S	0.2	2094	9.1	2107	9.1	100.6	95.0	Pass
924	PE 43+75	952.9	S	0.2	2094	9.1	2075	9.6	99.1	95.0	Pass
925	PE 44+25	952.8	<u>s</u>	0,2	2094	9.1	2120	8.5	101.2	95.0	Pass
926 927	PE 44+75 CL PE 45+25 US	952.6 952.6	<u> </u>	0.2 0.2	2094 2094	9.1 9.1	2025	10.9 9.0	96.7 98.6	95.0 95.0	Pass
928	SE 14+00 CL	952.4	S	0.2	2094	9.1	2065 1995	11.1	95.3	95.0	Pass Pass
929	SE 13+50 US	952.3	S	0.2	2094	9.1	2019	11.0	96.4	95.0	Pass
930	SE 13+00 DS	952.2	S	0.2	2094	9.1	2030	10.6	96.9	95.0	Pass
931 932	SE 11+50 US SE 11+00 DS	951.9 951.9	S	0.2 0.2	2094 2094	9.1	2041	10.1	97.5	95.0	Pass
932	SE 10+50 US	951.9	S	0.2	2094	9,1 9.1	2001 2015	12.0 11.2	95.5 96.2	95.0 95.0	Pass Pass
934	SE 10+00 CL	951.8	S	0.2	2094	9.1	2000	12.0	95.5	95.0	Pass
935	PE 27+75 CL	954.0	S	0.2	2094	9.1	2033	10.8	97.1	95.0	Pass
936	PE 38+75 CL	954.0	S	0.2	2094	9.1	2028	11.5	96.8	95.0	Pass
937 938	PE 39+25 US PE 39+75 DS	953.5 953.4	S S	0.2	2094	9.1	2010	12.1	96.0	95.0	Pass
938	PE 40+25 DS	953.4 953.2	S	0.2 0.2	2094 2094	9.1 9.1	2047 2034	10.8 10.3	97.7 97.1	95.0 95.0	Pass Pass
940	PE 40+75 CL	953.1	S	0.2	2094	9.1	2089	10.0	99.7	95.0	Pass
941	PE 41+25US	953.0	S	0.2	2094	9.1	2041	10.0	97.5	95.0	Pass
942	PE 41+75 US	953.0	S	0.2	2094	9.1	2014	10.9	96.2	95.0	Pass
943	PE 42+25 CL	953.1	S	0.2	2094	9.1	2063	10.0	98.5	95.0	Pass
944 945	PE 42+75 DS PE 43+25 CL	953.5 953.6	S S	0,2 0,2	2094 2094	9.1	2090 2035	10.6	99.8	95.0	Pass
945	PE 38+50	953.9	S	0.2	2094	9.1	2035	10.4 10.3	97.2 99.6	95.0 95.0	Pass Pass
947	PE 40+00	951.3	S	0.2	2094	9.1	2133	10.6	101.8	95.0	Pass
948	PE 40+50	951.3	S	0.2	2094	9.1	2060	11.2	98.4	95.0	Pass
949	PE 41+00	953.3	S	0.2	2094	9.1	2033	11.5	97.1	95.0	Pass
950	PE 43+75 US	953.3	S	0.2	2094	9.1	1990	12.0	95.0	95.0	Pass
951 952	PE 44+25 US PE 44+75 US	953.2 953.0	S S	0.2 0.2	2094 2094	9.1 9.1	2021 1994	12.3 11.7	96.5 95.2	95,0 95,0	Pass
953	PE 44+750S PE 45+25DS	952.6	S	0.2	2094	9.1	2045	10.6	95.2 97.6	95.0 95.0	Pass Pass
954	ME 15+75 CL	952.7	S	0.2	2094	9.1	2034	10.8	97.1	95.0	Pass
955	SE 15+25 DS	952.8	S	0.2	2094	9.1	2034	11.6	97.1	95.0	Pass

Knight Piésold FIELD COMPACTION TESTS (Metric) PROJECT NO .: 101-01/23 **NUCLEAR GAUGE** DATE: May to October 2008 Optimum Dry Moisture Compaction Pass TEST NO. Max, Dry Location Elevation Zone Test Moisture Content ompaction Specification Depth Density Densit (kg/m³ (%) (ka/m (%) (%) (%) (%) (m) 953.9 953.9 9.1 9.1 956 957 PE 39+25 0.2 2094 2023 10.6 96.6 95.0 Pass 96.5 95.0 Pass PE 39+75 0.2 2094 2022 PE 40+75 DS 953.6 953.1 0.2 9.1 9.1 2058 2028 10.0 98.3 96.8 95.0 95.0 Pass 10.9 Pass 959 0,2 2094 PE 41+25 US PE 41+75 DS 0.2 2059 953,2 11.6 98,3 95.0 Pass 960 10,9 95.0 Pass 9.1 95.9 961 PE 42+75 CL 953.5 2094 2008 96.2 97.2 962 953.7 0.2 209 9.1 10.8 95.0 Pass PE 43+75 CL PE 44+75 CL 953.6 953.0 953.8 953.6 963 0.2 2094 9.1 203 10.3 95.0 Pass 95.0 95.0 99.1 98.9 964 2094 PE 40+75 CL PE 41+25 DS 965 0.2 2094 9.1 2071 10.1 Pass 0.2 2066 Pass 209 966 967 PE 41+75 CL PE 42+25 US 953.5 0.2 2094 2094 9,1 10,1 98.0 95.0 Pass 2033 2059 2014 9.1 0.2 968 953.0 PE 42.75 DS 953,9 0.2 2094 10.3 98.3 95.0 Pass 9.1 11.6 95.0 Pass PE 43+25 US 954.0 0.2 2094 970 PE 43+75 CL 0.2 9,1 2012 11.7 96.1 95.0 Pass 953.7 95.0 9.1 11.0 96.6 Pass 972 PE 44+24 US 0.2 2094 202 952.5 952.4 0.2 95.4 100.9 95.0 95.0 Pass Pass 973 SE 14+25 CI 2094 1997 11. 11.3 2113 SE 13+25 CL 2094 9.1 974 SE 12+25 SE 14+00 952.5 2094 2010 11.0 11.4 96.0 95.9 95.0 95.0 Pass Pass 976 952.9 0.2 2094 9.1 2008 977 978 SE 1100 US 952.4 0.2 2094 2094 10.7 9.5 96.9 95.0 95.0 Pass Pass 100.2 9.1 2099 SE 1050 C 952.5 0.2 SE 1000 DS 952.5 952.6 2054 10.5 98.1 95.0 95.0 Pass 99.6 Pass 0.2 9.1 9.6 980 ME 1600 C 2094 2086 2044 2056 97.6 98.2 95.0 95.0 Pass Pass SE 1550 US 953.0 0.2 2094 9.1 10.0 981 SE 1500 C 953.1 982 0.2 2094 9,1 9.8 983 984 SE 1450 US 9.1 9.1 2001 10.1 95.5 95.0 95.0 Pass 953.3 9.9 Pass SE 1400 DS 0.2 2094 99,1 98.7 100.8 985 953,0 2094 2067 9.9 95.0 Pass SE 1350 C 0,2 986 SE 1300 US 953.1 954.0 2094 9.1 2111 10.2 95.0 Pass 12.0 95.0 95.0 98 0.2 PE 4050 DS PE 4100 US 954.0 954.0 2094 2094 97.9 988 0.2 9.1 2050 11.6 Pass 0.2 10.0 989 PE 4150 US PE 4200 DS 953.7 953.8 2094 2094 101. 0.2 9.1 2119 10.2 95.0 Pass 0.2 10.2 9.1 2096 Pass 991 PE 4275 C PE 4325 US 954.0 954.0 0.2 2094 9.1 10.1 98.4 95.0 Pass 9.1 101.1 0.2 Pass 993 2094 PE 4375 US PE 4425 C 953.9 2094 9,1 2049 11.3 97.8 95.0 Pass 2140 102.2 95.0 Pass 953.7 0.2 9.1 995 2094 PE 4480 DS PE 4550 C 996 953.5 952.5 0.2 2094 2094 9.1 9.1 2084 9.4 99.5 98.3 95.0 95.0 Pass 2059 10.9 Pass 997 952.7 952.7 95.0 95.0 998 2094 101.3 Pass 101.1 9.6 Pass 999 SE 1200 US 0.2 2094 9.1 2117 SE 1150 US SE 1075 C 2131 2036 9.6 9.3 101.7 97.2 95.0 95.0 952.8 2094 Pass Pass 100 952. 0.2 2094 9.1 2090 2084 95.0 95.0 1002 952.7 951.3 2094 9.1 9.1 10.2 99.8 Pass Pass 2094 2094 1003 SE 975 W 0.2 9.6 99.5 1004 2118 8.5 101.1 95.0 Pass SE 900 W 9.1 2079 12.0 95.0 Pass 100 SE 850 W 951.3 0.2 2094 99.3 1006 2137 2121 102.0 101.3 95.0 95.0 Pass Pass 100 SE 1550 C 953.3 0.2 2094 9.1 10,3 2112 2106 100.8 100.6 953.3 10.6 95.0 Pass 0.2 2094 9.1 1008 Pass 1009 1010 95.0 SE 1400 DS 953.3 2094 9.1 11.1 953.3 952.8 951.6 SE 1300 C 0.2 2094 10.8 Pass 1011 SE 1225 US 0.2 2094 2094 9.1 2111 10.9 100.8 95.0 Pass 10.3 100.4 Pass 1012 SE 900 W 1013 1014 951.6 951.6 95,0 2094 9.1 2143 9.4 102.3 Pass SE 800 W 2094 9.1 2052 98.0 2060 2112 2135 1015 1016 SE 1100 C SE 1175 US 952.7 952.8 2094 9.1 10.5 98.4 95.0 Pass 95.0 9.1 SE 950 W 951.9 951.9 9.1 9.1 2094 8.8 101.9 95.0 Pass 2130 95.0 SE 875 W Pass 2094 1018 0.2 1019 ME 1625 US 953.7 0.2 2094 9.1 2128 9.6 101.6 95.0 Pass 9.1 2096 Pass 953.4 2094 1020 SE 1050 DS SE 975 US 953.0 952.4 2158 2130 9.7 9.9 1021 1022 2094 9.1 103,0 95.0 Pass 9.1 95.0 Pass 0.2 2094 10.9 10.6 95.0 95.0 1023 SE 800 C 2094 9.1 2067 98.7 Pass 100.6 SE 950 C 9.1 2106 Pass 1024 952.4 0.2 2094 SE 1475 9.1 9.1 2153 2102 9.6 10.0 102.8 Pass 95.0 Pass 1026 1027 100.4 SE 1400 DS 953.5 0.2 2094 953.5 2092 10.0 99,9 95.0 Pass SE 1325 US 2094 9,1 12.5 Pass 1028 SE 800 DS 952.5 0.2 2094 2015 96.2 95.0 952.3 953.3 96.5 97.8 95.0 95.0 SE 975 US 2094 9.1 1029 2094 2094 1030 SE 1025 DS 0.2 9.1 2048 11.5 Pass 953.3 11.8 96.9 95.0 Pass 0.2 9.1 2030 1031 SE 1100 C 953.3 953.3 2094 2094 1032 1033 SE 1175 US 0.2 9.1 2105 9.9 100.5 95.0 Pass 0.2 9.1 2051 11.6 97.9 95.0 Pass SE 1250 DS 2094 2094 2167 2023 9.6 7.9 95.0 95.0 1034 SE 1300 C 953.3 0.2 9.1 103.5 Pass Pass 96.6 9.1 1035 SE 750 W 951.3 0.2 2094 9.1 2099 10.4 100.2 95.0 Pass 1036 1037 ME 1600 C 953.7 0.2 2094 9.1 2072 11.2 98.9 95.0 Pass 1038 953.7 2094 9.1 2083 11.4 10.6 99.5 100.8 95.0 95.0 Pass SE 750 W 951.6 0.2 2094 9.1 2112 Pass 95.0 95.0 2094 SE 750 W 951.9 0.2 1040 1041 1042 953.0 SE 950 C 0.2 2094 9.1 2092 10.9 99.9 Pass SE 875 US

#N/A		ReVd 4-Dec-08

Knip	ht Piés	old	FIE	LD COMPA			etric)		PROJECT NO.:		101-01/23
	COMBUL.	TIME	T	NUC	LEAR GA	UGE	1		DATE:	May to Oc	tober 2008
TEST NO.	Lagation	Elevation	Zana	Tool	May Day	Ontinum	Dec	l Maintura	T	Composition	D
TEST NO.	Location	(m)	Zone	Test Depth	Max. Dry Density	Optimum Moisture	Dry Density	Moisture Content	Compaction	Compaction Specification	Pass or
				(m)	(kg/m³)	(%)	(kg/m ³)	(%)	(%)	(%)	(%)
1043 1044	SE 810 DS SE 1475 DS	953.0 953.7	S	0.2	2094 2094	9.1	2100 2060	9.4	100.3 98,4	95.0 95.0	Pass
1045	SE 1400 C	953.7	S	0.2	2094	9.1	2092	11.1	99.9	95.0	Pass Pass
1046	SE 1325 US	953.7	S	0.2	2094	9.1	2006	10.6	95.8	95.0	Pass
1047 1048	SE 1250 C SE 1175 C	953.7 953.5	S	0.2	2094 2094	9.1 9.1	2013 2009	12.3 12.9	96.1 95.9	95.0 95.0	Pass
1049	SE 1025 C	953.6	S	0.2	2094	9.1	2009	9.4	100.0	95.0	Pass Pass
1050	SE 950 C	953.0	S	0.2	2094	9.1	2154	9.8	102.8	95.0	Pass
1051 1052	SE 875 DS	953.0 953.0	<u> </u>	0.2	2094	9.1	2110	9.9	100.7	95.0	Pass
1052	SE 825 DS SE 725 C	952.3	S	0.2	2094 2094	9.1	1999 2037	13.5 10.5	95.4 97.3	95.0 95.0	Pass Pass
1054	SE 1075 C	953.6	S	0.2	2094	9.1	2020	12.7	96.4	95.0	Pass
1055	SE 1125 DS	953.5	S S	0.2	2094	9.1	2063	11.9	98.5	95.0	Pass
1056 1057	ME 1625 DS SE 1525 US	954.0 954.0	S S	0.2	2094 2094	9.1 9.1	1999 2013	13.1 13.3	95.4 96.1	95.0 95.0	Pass Pass
1058	SE 1535 US	953.8	S	0.2	2094	9.1	2041	12.1	97.5	95.0	Pass
1059	SE 1025 C	953.8	S	0.2	2094	9,1	2116	10.0	101.0	95.0	Pass
1060 1061	SE 950 US SE 875 DS	953.3 953.3	S	0.2	2094 2094	9,1	2013 2065	13.0 11.4	96,1 98,6	95.0 95.0	Pass Pass
1062	PE 3925 C	954.0	s	0.2	2094	9.1	2009	12.8	95.9	95.0	Pass
1063	PE 3975 US	954.0	S	0.2	2094	9.1	2070	10.0	98.8	95.0	Pass
1064 1065	PE 4110 US PE 4140 US	954.0 954.0	S	0.2	2094	9.1	2064	11.4	98.5	95.0	Pass
1065	PE 4140 US PE 4650 W	954.0 951.0	S	0.2 0.2	2094 2094	9.1 9.1	2055 2100	12.3 7.1	98.1	95.0 95.0	Pass Pass
1067	PE 4200 DS	954.0	S	0.2	2094	9.1	2014	11.5	96.2	95.0	Pass
1068	PE 4275 US	954.0	S	0.2	2094	9.1	2035	11.2	97.2	95.0	Pass
1069 1070	PE 4425 DS PE 4500 US	954,0 953.0	S	0.2 0.2	2094 2094	9.1 9.1	2113 2088	10.3	100.9 99.7	95.0 95.0	Pass Pass
1071	PE 4550 US	952.7	Š	0.2	2094	9.1	1991	12.8	95.1	95.0	Pass
1072	PE 4600 C	951.6	S	0.2	2094	9.1	2010	12.3	96.0	95.0	Pass
1073 1074	PE 4630 US SE 14+85 C	951.6 954.1	S	0.2	2094 2094	9.1 9.1	2031	11.6	97.0	95.0	Pass
1074	SE 14+65 C	954.1 954.1	S	0.2	2094	9.1	2100 2018	10.9 12.1	100.3 96.4	95.0 95.0	Pass Pass
1076	SE 13+75 US	954.1	S	0.2	2094	9.1	2065	11.4	98.6	95.0	Pass
1077	SE 13+25 C	954.0	S	0.2	2094	9,1	2044	11.7	97.6	95.0	Pass
1078 1079	SE 12+75 US SE 12+25 DS	954.0 954.0	S S	0,2 0.2	2094 2094	9.1 9.1	2135 2099	9.4	101.9	95.0 95.0	Pass Pass
1080	SE 13+25 US	954.0	. s	0.2	2094	9.1	2068	10.9	98.7	95.0	Pass
1081	SE 12+50 C	953.8	S	0,2	2094	9.1	2095	10.5	100.0	95.0	Pass
1082 1083	SE 12+00 DS SE 11+25 US	953.7 953.7	S S	0.2 0.2	2094 2094	9,1 9,1	2081 2044	10,3 10,9	99,4 97.6	95.0 95.0	Pass
1084	SE 10+50 C	953.7	s	0.2	2094	9.1	2047	12.0	97.7	95.0	Pass Pass
1085	SE 10+00 DS	953.8	S	0,2	2094	9.1	2023	12.8	96.6	95.0	Pass
1086	PE 44+25 DS	954.0	S	0.2	2094	9.1	2088	9.9	99.7	95.0	Pass
1087 1088	PE 45+00 C PE 45+50 DS	953.9 953.0	S S	0.2 0.2	2094 2094	9.1 9.1	2090 2006	9.8 12.1	99.8 95.8	95.0 95.0	Pass Pass
1089	PE 46+25	951.9	Š	0.2	2094	9.1	2084	10.0	99.5	95.0	Pass
1090	SE 9+60 C	953.7	S	0.2	2094	9.1	2077	10.7	99.2	95.0	Pass
1091 1092	SE 8+90 D SE 8+25 C	953.8 953.8	S	0.2 0.2	2094 2094	9.1 9.1	2000 2078	10.4 10.6	95.5 99.2	95.0 95.0	Pass Pass
1093	SE 7+75 U	953.0	S	0.2	2094	9.1	2066	11.2	98.6	95.0	Pass
1094	SE 7+25 C	952.6	S	0.2	2094	9.1	2069	10.3	98.8	95.0	Pass
1095	SE 6+75 W	951.0	S	0.2	2094	9.1	2180	8.2	104.1	95.0	Pass
1096 1097	SE 12+50 C SE 12+00 D	954.0 954.0	S S	0.2 0.2	2094 2094	9.1 9.1	2129 2067	9.7 11.6	101.7 98.7	95.0 95.0	Pass Pass
1098	SE 8+50 U	954.0	S	0.2	2094	9.1	2020	12.1	96.4	95.0	Pass
1099	SE 9+00 D	954.0	S	0.2	2094	9.1	2008	11.6	95.9	95.0	Pass
1100 1101	SE 9+50 C SE 10+00 U	954.0 954.0	S S	0,2 0,2	2094 2094	9.1 9.1	2076 2026	10.6 11.3	99.1 96.7	95.0 95.0	Pass Pass
1102	SE 10+75 D	954.0	S	0.2	2094	9.1	2053	11.0	98.0	95.0	Pass
1103	SE 11+25 D	954.0	S	0.2	2094	9.1	2107	11.1	100.6	95.0	Pass
1104 1105	SE 7+00 C SE 7+50 D	952.3 953.0	S	0.2	2094 2094	9.1 9.1	2035 2029	12.4 11.7	97.2 96.9	95.0 95.0	Pass Pass
1106	SE 8+00 U	953.7	S	0.2	2094	9.1	2163	10.6	103.3	95.0	Pass
1107	SE 8+50 U	954.0	S	0.2	2094	9,1	2010	12.6	96.0	95.0	Pass
1108 1109	SE 9+00 C SE 9+75 D	954.0 954.0	S S	0.2	2094 2094	9.1	2069	11.0	98.8	95.0	Pass
1110	SE 10+50 US	954.0	S	0.2 0.2	2094	9.1 9.1	2034 2098	10.3 10.1	97.1 100.2	95.0 95.0	Pass Pass
1111	SE 6+00 W	952.0	S	0.2	2094	9,1	2007	12.6	95.8	95.0	Pass
1112	SE 6+75 C	952.0	S	0.2	2094	9.1	2064	11.2	98.5	95.0	Pass
1113 1114	SE 8+25 D SE 8+00 C	953.7 953.3	S S	0.2 0.2	2094 2094	9.1 9.1	2059 2038	12.1 11.0	98.3 97.3	95.0 95.0	Pass Pass
1115	SE 6+15 D	952.3	S	0.2	2094	9.1	2056	11.5	98.2	95.0	Pass
1116	SE 6+75 D	952.3	S	0.2	2094	9.1	2023	11.8	96.6	95.0	Pass
1117	SE 7+40 C	953.6	S	0.2	2094	9.1	2071	10.6	98.9	95.0	Pass
1118 1119	SE 8+00 C SE 7+35 C	954.0 953.6	S S	0.2	2094 2094	9.1 9.1	2050 2029	12.2 12.1	97.9 96.9	95.0 95.0	Pass Pass
1120	SE 6+15 C	952.7	S	0.2	2094	9.1	2029	12.4	97.5	95.0	Pass
1121	SE 6+50 D	952.5	S	0.2	2094	9.1	2049	11.5	97.8	95.0	Pass
1122	SE 7+00 C	953.0	S	0.2	2094	9.1	2060	11.3	98.4	95.0	Pass
1123 1124	SE 5+85 C SE 7+25 C	953.3 954.0	S S	0.2 0.2	2094 2094	9.1 9.1	2021 2062	11.9 9.7	96,5 98,5	95.0 95.0	Pass Pass
1125	SE 7+75 U	953.3	S	0.2	2094	9.1	2044	14.2	97.6	95.0	Pass
1126	SE 5+80 U	953.1	S	0.2	2094	9.1	2037	11.0	97.3	95.0	Pass
1127 1128	SE 6+50 C SE 6+85 C	952.9 953.5	S	0.2	2094 2094	9.1	2038	12.1	97.3	95.0	Pass
1128	SE 5+85 C SE 7+40 U	953.5 953.8	S S	0.2 0.2	2094	9.1 9.1	2036 2036	11.5 11.6	97.2 97.2	95.0 95.0	Pass Pass
											1 443

#NA Revd 4-Dec-08

1130 SE 7- 1131 SE 6- 1132 SE 7- 1133 SE 7- 1134 SE 5- 1135 SE 6- 1135 SE 6- 1136 SE 5- 1137 SE 7- 1138 SE 6- 1140 SE 6- 1140 SE 6- 1141 SE 6- 1142 SE 6- 1144 PE 45 1144 PE 45 1146 PE 48 1147 PE 45 1148 PE 444 1149 PE 48 1150 PE 47 1151 PE 45 1152 PE 45 1153 PE 46 1155 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1159 PE 46 1160 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1166 PE	0cation 7+65 D 6+25 C 7+10 U 5+50 C 6+25 C 7+25 D 6+25 C 5+65 U 7+25 D 6+25 C 6+00 D 6+25 C 6+00 C 6+440 U 45+75 C 46+25 U 48+75 U 48+75 U 48+75 U 48+75 U 48+75 U 48+75 C 48+50 C 48+10 D 48+10 D 48+25 CL 48+50 C 48+10 D 48+25 CL 48+50 C 48+10 C	Elevation (m) 954.0 953.3 954.0 953.9 954.0 953.8 953.8 953.8 953.8 953.8 953.8 953.8 953.8 954.0 954.0 952.5 952.3 953.6 953.6 953.7 952.8 954.0 954.0 955.7 953.7 953.7	Zone S S S S S S S S S S S S S S S S S S	Test Depth (m) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Max. Dry Density (kg/m²) 2094 2094 2094 2094 2094 2094 2094 2094	Optimum Moisture (%) 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	Dry Density (kg/m²) 2009 2062 2047 2034 2082 2047 2057 2057 2022 2075 2014 2065 2041 2083 2038 1997 1994 1992 2129 1996	Moisture Content (%) 12.4 10.9 10.9 11.7 10.8 11.5 11.3 11.2 11.7 11.8 12.3 11.7 12.3 11.6 12.2 11.2 11.1 11.6 12.3 12.2 11.2 11.8 8.7	Compacion (%) 95.9 98.5 97.7 97.1 97.1 99.4 97.7 98.2 96.9 99.1 96.2 96.5 99.1 96.2 98.6 97.5 97.3 95.4 97.3 95.4 95.2 95.1 101.7	Compaction Specification (%) 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass or (%) Pass Pass Pass Pass Pass Pass Pass Pass
1131 SE 6: 1132 SE 7: 1133 SE 7: 1134 SE 5: 1135 SE 6: 1136 SE 5: 1137 SE 7: 1138 SE 6: 1139 SE 6: 1140 SE 6: 1141 SE 6: 1141 SE 6: 1144 PE 45 1144 PE 45 1144 PE 45 1145 PE 46 1146 PE 46 1147 PE 45 1151 PE 45 1151 PE 45 1152 PE 45 1155 PE 46 1155 PE 46 1155 PE 46 1157 PE 45 1158 PE 45 1158 PE 45 1159 PE 45 1159 PE 45 1151 PE 45 1151 PE 45 1151 PE 45 1152 PE 45 1153 PE 45 1154 PE 444 1155 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 45 1159 PE 46 1160 PE 47 1161 PE 47 1162 PE 45 1163 PE 46 1160 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1166 PE 41 1167 PE 41	6+25 C 7+65 C 7+65 C 7+65 C 7+65 C 7+10 U 5+50 C 6+25 C 6+75 D 6+25 C 6+00 D 6+25 C 6+00 D 6+25 C 6+00 C 6+40 U 45+75 C 46+25 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 45+10 D 45+25 CL 45+10 D 45+25 CL 45+15 C 44+75 US 46+75 C 44+75 US 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 C 45+15 C 46+75 C 45+15 C 46+00 U 46+40 D 47+00 C 47+00 C	953.3 954.0 953.9 954.0 953.5 953.8 954.0 953.8 953.8 953.8 954.1 954.0 954.0 954.0 952.5 953.8 954.0 954.0 952.5 953.8 954.0 954.0 955.8 955.8 956.1 956.0 957.0 957.0 958.0 95	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2009 2062 2047 2034 2082 2047 2057 2030 2075 2022 2075 2014 2065 2014 2083 2038 1997 1994 1992 2129	12.4 10.9 10.9 11.7 10.8 11.5 11.3 11.2 11.7 11.8 12.3 11.7 12.3 11.6 12.2 11.2 11.6 12.3 11.6 12.2 11.2	95.9 98.5 97.7 97.1 99.4 97.7 98.2 96.9 99.1 98.2 96.5 96.5 99.1 96.2 98.6 97.5 99.5 97.3 95.4 95.2 95.1 101.7	95.0 95.0	Pass Pass Pass Pass Pass Pass Pass Pass
1131 SE 6: 1132 SE 7: 1133 SE 7: 1134 SE 5: 1135 SE 6: 1136 SE 5: 1137 SE 7: 1138 SE 6: 1139 SE 6: 1140 SE 6: 1141 SE 6: 1141 SE 6: 1144 PE 45 1144 PE 45 1144 PE 45 1145 PE 46 1144 PE 45 1145 PE 46 1146 PE 46 1147 PE 45 1151 PE 45 1151 PE 45 1152 PE 45 1152 PE 45 1155 PE 46 1155 PE 46 1157 PE 45 1158 PE 45 1158 PE 45 1159 PE 45 1159 PE 45 1151 PE 45 1151 PE 45 1151 PE 45 1152 PE 45 1151 PE 45 1151 PE 45 1151 PE 45 1151 PE 45 1152 PE 45 1154 PE 444 1155 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 45 1159 PE 46 1160 PE 47 1161 PE 47 1162 PE 45 1163 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1166 PE 41 1166 PE 41	6+25 C 7+65 C 7+65 C 7+65 C 7+65 C 7+10 U 5+50 C 6+25 C 6+75 D 6+25 C 6+00 D 6+25 C 6+00 D 6+25 C 6+00 C 6+40 U 45+75 C 46+25 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 45+10 D 45+25 CL 45+10 D 45+25 CL 45+15 C 44+75 US 46+75 C 44+75 US 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 C 45+15 C 46+75 C 45+15 C 46+00 U 46+40 D 47+00 C 47+00 C	953.3 954.0 953.9 954.0 953.5 953.8 954.0 953.8 953.8 953.8 954.1 954.0 954.0 954.0 952.5 953.8 954.0 954.0 952.5 953.8 954.0 954.0 955.8 955.8 956.1 956.0 957.0 957.0 958.0 95	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2062 2047 2034 2082 2047 2057 2030 2075 2057 2022 2075 2014 2065 2041 2083 2038 1997 1994 1992 2129	10.9 10.9 11.7 10.8 11.5 11.3 11.2 11.7 11.8 12.3 11.7 12.3 11.6 12.2 11.6 12.3 11.6 12.8 11.6 12.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9	98.5 97.7 97.1 99.4 97.7 98.2 96.9 99.1 98.2 96.5 98.6 97.5 99.5 97.5 97.5 97.5	95.0 95.0	Pass Pass
1132 SE 7- 1133 SE 7- 1133 SE 7- 1134 SE 5- 1135 SE 6- 1136 SE 5- 1137 SE 7- 1138 SE 6- 1140 SE 6- 1140 SE 6- 1141 SE 6- 1142 SE 6- 1143 SE 6- 1144 PE 45 1144 PE 45 1145 PE 48 1146 PE 48 1147 PE 45 1148 PE 44+ 1149 PE 45 1150 PE 47 1151 PE 45 1152 PE 45- 1153 PE 45 1155 PE 46 1157 PE 45 1158 PE 45 1159 PE 46 1157 PE 45 1158 PE 45 1159 PE 46 1157 PE 45 1158 PE 45 1159 PE 46 1160 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Cont 1166 PE 46 1166 PE 46 1167 PE 41	T-465 C T+10 U 5+50 C 6+25 C 6+25 C 6+25 C 6+75 D 6+75 D 6+75 D 6+75 D 6+75 D 6+75 U 6+75 U 45+75 C 46+25 U 45+75 U 45+10 C 45+75 U 45+10 C 45+10 C 45+15 C 45+15 C 45+15 C 45+15 C 45+15 C 45+15 C 45+15 C 45+15 C 45+10 U 46+40 D 47+40 C 45+25 CL	954.0 953.9 954.0 953.5 953.8 953.8 953.8 953.8 954.1 954.0 952.5 953.8 954.1 954.0 952.5 953.8 954.1 954.0 952.5 953.8 954.0 953.8 954.0 953.8 954.0 953.8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2047 2034 2082 2047 2057 2030 2075 2022 2075 2022 2075 2014 2065 2041 2083 2038 1997 1994 1992 2129	10.9 11.7 10.8 11.5 11.3 11.2 11.7 11.7 11.8 12.3 11.6 12.2 11.6 12.2 11.6 12.3 11.6 12.2 11.6 12.3 11.7 11.0 11.0 11.0 11.0 11.0 11.0 11.0	97.7 97.1 99.4 97.7 98.2 96.9 99.1 98.2 96.5 99.1 96.2 98.6 97.5 99.5 99.5 99.5 99.5 99.5 99.5 99.1	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass
1133 SE 7- 1134 SE 5- 1135 SE 6- 1136 SE 5- 1137 SE 7- 1138 SE 6- 1137 SE 7- 1138 SE 6- 1139 SE 6- 1141 SE 6- 1141 SE 6- 1144 PE 45 1144 PE 45 1145 PE 46 1147 PE 45 1148 PE 44- 1150 PE 47 1151 PE 48 1150 PE 47 1151 PE 48 1155 PE 48 1155 PE 48 1155 PE 48 1155 PE 48 1156 PE 46 1157 PE 45 1158 PE 45 1159 PE 46 1159 PE 46 1160 PE 46 1161 PE 47 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Con 1166 PE 46 1167 PE 41 1167 PE 41	E7+10U 5+50C 6+25C 6+25C 5+65U 7+25D 6+75D 6+25C 6+00D 6+25C 6+00C 6+40U 45+75 U 46+75 U 46+40 D 47+00 C	953.9 954.0 953.5 953.8 953.8 953.8 953.8 954.0 953.8 954.0 952.5 952.3 954.0 952.3 954.0 952.3 954.0 953.8 954.0 952.3 954.0 953.8 954.0 953.7 952.8 953.4 953.4 953.4 953.4 953.4 953.6 953.6 953.6 953.6 953.7 953.8 954.0 953.8 954.0 953.8 954.0 953.7 953.8 954.0 953.4 953.4 953.4 953.6 953.6 953.6 953.6 953.7 953.8 954.0 953.6 953.6 953.6 953.6 953.6 953.6 953.6 953.6 953.6 953.6 953.6 953.6 953.6 953.6 953.6 953.6 953.6 953.6	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2034 2082 2047 2057 2030 2075 2057 2057 2014 2065 2014 2083 2038 1997 1994 1992 2129 1996	11.7 10.8 11.5 11.3 11.2 11.7 11.8 12.3 11.7 12.3 11.6 12.2 11.2 11.6 12.3 11.6 12.2 11.2	97.1 99.4 97.7 98.2 96.9 99.1 98.2 96.5 99.1 96.2 98.6 97.5 99.5 97.3 95.4 95.2 95.1	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass
1134 SE 5- 1135 SE 6- 1135 SE 6- 1136 SE 5- 1137 SE 7- 1138 SE 6- 1139 SE 6- 1140 SE 6- 1141 SE 6- 1141 SE 6- 1143 SE 6- 1144 PE 45 1144 PE 45 1145 PE 46 1146 PE 46 1147 PE 45 1151 PE 45 1151 PE 45 1152 PE 45 1152 PE 45 1155 PE 46 1155 PE 46 1155 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 45 1159 PE 46 1160 PE 47 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Con 1166 PE 46 1167 PE 41 1166 PE 44 1167 PE 41	5+50 C 5+25 C 5+25 C 5+65 U 7+25 D 6+75 D 6+75 D 6+75 C 6+00 D 6+75 U 6+00 C 6+40 U 45+75 C 46+25 U 46+75 U 46+75 U 45+00 C 44+50 US 46+75 U 45+10 D 45+25 CL 45+15 C 44+75 US 46+75 C 44+75 US 46+75 U 46+75 C 44+75 US 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 C 45+15 C 45+15 C 45+15 C 45+15 C 45+15 C 45+10 U 46+40 D 47+00 C 47+00 C	954.0 953.5 953.8 954.0 953.8 953.8 953.8 953.8 954.0 954.0 952.5 952.3 953.6 954.0 954.0 953.8 954.0 953.8 954.0 953.8 954.0 953.8 954.0 953.8 953.8 953.8 953.8 953.8 953.8 953.8 953.8 953.8 953.8 953.8 953.8 953.8 953.8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2082 2047 2057 2030 2075 2022 2075 2014 2065 2041 2083 2038 1997 1994 1992 2129	10.8 11.5 11.3 11.2 11.7 11.8 12.3 11.7 12.3 11.6 12.2 11.2 11.6 12.3 11.6 12.3 11.6 12.8 11.6 12.8 11.7 11.8 12.8 11.7 11.8 12.8 11.7 11.8 12.8 11.7 11.8 12.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.8	99.4 97.7 98.2 96.9 99.1 98.2 96.5 99.1 96.2 98.6 97.5 99.5 97.3 95.4 95.2	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass Pass Pass Pass
1135 SE 6- 1136 SE 5- 1136 SE 5- 1137 SE 7- 1138 SE 6- 1143 SE 6- 1140 SE 6- 1141 SE 6- 1141 SE 6- 1142 SE 6- 1144 PE 45 1144 PE 45 1145 PE 48 1146 PE 48 1147 PE 45 1148 PE 44 1149 PE 45 1150 PE 47 1151 PE 45 1152 PE 45- 1153 PE 45 1155 PE 46 1156 PE 48 1156 PE 48 1157 PE 45 1158 PE 45 1158 PE 45 1159 PE 45 1159 PE 45 1160 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Cont 1166 PE 46 1166 PE 46 1167 PE 41	6+25 C 5+65 U 7+25 D 6+75 D 6+75 D 6+75 D 6+75 D 6+75 U 6+70 C 6+40 U 45+75 C 46+25 U 46+75 U 45+0 C 47+00 C 47+00 C 45+10 D 45+25 CL 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 47+00 C 47+00 C 45+10 D 46+75 U 46+75 U 46+40 D 47+00 C 47+00 C	953.5 953.8 953.8 953.8 953.8 953.8 954.0 954.0 952.5 952.3 954.0 954.0 953.8 954.0 953.7 953.7 953.7 953.7 953.7 953.7 953.7 953.8	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2047 2057 2030 2075 2075 2022 2075 2014 2065 2041 2083 2038 1997 1994 1992 2129	11.5 11.3 11.2 11.7 11.7 11.8 12.3 11.6 12.2 11.6 12.2 11.6 12.3 11.2 11.8 8.7 10.7	97.7 98.2 96.9 99.1 98.2 96.5 99.1 96.2 98.6 97.5 99.5 99.5 99.5 95.4	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass Pass Pass Pass
1136 SE 5- 1137 SE 7- 1138 SE 6- 1139 SE 6- 1140 SE 6- 1141 SE 6- 1141 SE 6- 1142 SE 6- 1143 SE 6- 1144 PE 45 1144 PE 45 1145 PE 46 1147 PE 45 1149 PE 46 1150 PE 47 1151 PE 45 1152 PE 45- 1151 PE 45 1152 PE 45- 1153 PE 46 1155 PE 46 1157 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1160 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Con 1166 PE 46 1167 PE 41	5+65 U 7+25 D 6+75 D 6+75 D 6+25 C 6+00 D 6+25 C 6+00 C 6+40 U 45+75 C 46+25 U 48+75 C 48+10 D 48+10 D 48+10 D 48+10 D 48+10 D 48+10 D 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C 48+10 C	953.8 954.0 953.8 953.8 953.8 954.0 954.0 952.5 952.3 954.0 954.0 954.0 953.7 953.7 953.7 953.7 953.7 953.7 953.7 953.7 953.7 953.8	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2057 2030 2075 2057 2057 2022 2075 2014 2065 2041 2083 2038 1997 1994 1992 2129 1996	11.3 11.2 11.7 11.8 12.3 11.6 12.2 11.2 11.6 12.2 11.2 11.6 12.3 12.2 11.8 8.7	98.2 96.9 99.1 98.2 96.5 99.1 96.2 98.6 97.5 99.5 97.3 95.4 95.2 95.1 101.7	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass Pass Pass Pass
1137 SE 7- 1138 SE 6- 1139 SE 6- 1140 SE 6- 1141 SE 6- 1141 SE 6- 1142 SE 6- 1143 SE 6- 1144 PE 45 1145 PE 46 1146 PE 46 1147 PE 45 1149 PE 45 1150 PE 47 1151 PE 45 1152 PE 45- 1152 PE 45- 1155 PE 46 1155 PE 46 1156 PE 46 1157 PE 45 1158 PE 46 1159 PE 47 1151 PE 45 1151 PE 45 1152 PE 45- 1153 PE 45 1154 PE 444 1155 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 45 1159 PE 46 1160 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Con 1166 PE 46 1167 PE 41	E7+25 D 6+75 D 6+75 D 6+25 C 6+00 D 6+00 C 6+40 U 45+75 C 46+25 U 46+75 U 46+75 U 45+00 C 45+10 D 45+25 CL 45+10 D 45+25 CL 46+75 U 46+75 U 45+10 D 45+25 CL 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 C 46+75 U 46+75 U 46+40 U 46+40 U 47+00 C 45+25 CL	954.0 953.8 953.8 953.8 953.8 954.0 954.0 952.5 952.3 953.6 954.0 953.7 953.7 953.7 953.4 953.4 953.4 953.4 953.4	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2030 2075 2075 2057 2022 2075 2014 2065 2041 2083 2038 1997 1994 1992 2129	11.2 11.7 11.8 12.3 11.7 12.3 11.6 12.2 11.2 11.6 12.3 12.3 11.8 8.7	99.1 98.2 96.5 99.1 96.2 98.6 97.5 99.5 97.3 95.4 95.2 95.1	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass Pass Pass Pass
1138 SE 6- 1139 SE 6- 1140 SE 6- 1141 SE 6- 1141 SE 6- 1142 SE 6- 1143 SE 6- 1144 PE 45 1144 PE 45 1145 PE 48 1146 PE 48 1147 PE 45 1148 PE 441 1149 PE 45 1150 PE 47 1151 PE 45 1152 PE 45- 1153 PE 45- 1154 PE 441 1155 PE 48 1156 PE 48 1157 PE 45 1158 PE 48 1159 PE 48 1160 PE 48 1160 PE 48 1161 PE 47 1162 PE 45- 1163 PE 48 1164 Cont 1165 Cont 1166 PE 48 1166 PE 48 1167 PE 44	6+75 D 6+25 C 6+20 D 6+75 U 6+70 C 6+40 U 45+75 C 46+25 U 46+75 U 45+00 C 45+00 C 45+10 D 45+10 D 45+10 D 45+10 D 45+15 C 45+10 D 45+25 CL 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 C 46+75 U 46+75 U 46+75 U 46+75 C 46+75 U 46+75 U 46+40 D 47+00 C 47+00 C	953.8 953.8 953.8 954.1 954.0 954.0 952.5 952.3 953.6 954.0 953.8 954.0 953.7 953.7 953.7 953.4 954.1 953.4 953.4 953.4 953.4	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2075 2057 2052 2075 2014 2065 2041 2083 2038 1997 1994 1992 2129 1996	11.8 12.3 11.7 12.3 11.6 12.2 11.2 11.6 12.3 12.2 11.8 8.7 10.7	98.2 96.5 99.1 96.2 98.6 97.5 99.5 97.3 95.4 95.2 95.1 101.7	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass Pass Pass Pass
1139 SE 6- 1140 SE 6- 1141 SE 6- 1141 SE 6- 1142 SE 6- 1143 SE 6- 1144 PE 45- 1145 PE 46- 1146 PE 46- 1147 PE 45- 1148 PE 444- 1149 PE 45- 1150 PE 47- 1151 PE 45- 1152 PE 45- 1153 PE 45- 1154 PE 444- 1155 PE 46- 1156 PE 46- 1157 PE 45- 1158 PE 46- 1157 PE 45- 1158 PE 46- 1157 PE 45- 1158 PE 46- 1160 PE 46- 1161 PE 47- 1162 PE 45- 1163 PE 46- 1161 PE 47- 1162 PE 45- 1163 PE 46- 1164 Con- 1166 PE 46-	6+25 C 6+00 D 6+75 U 6+75 U 6+75 U 6+00 C 6+40 U 45+75 C 46+25 U 45+75 U 45+00 C 44+50 US 46+75 U 45+10 D 45+25 CL 45+10 D 45+25 CL 45+10 D 45+25 CL 46+50 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+75 U 46+70 U 46+00 U 46+00 U 46+00 U 46+00 C	953.8 953.8 954.1 954.0 954.0 952.5 952.3 953.6 954.0 953.7 953.7 953.7 953.7 953.4 954.0 953.4 953.4 953.4 953.4	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2022 2075 2014 2065 2041 2083 2038 1997 1994 1992 2129 1996	12.3 11.7 12.3 11.6 12.2 11.2 11.6 12.3 12.3 12.2 11.8 8.7 10.7	96.5 99.1 96.2 98.6 97.5 99.5 97.3 95.4 95.2 95.1 101.7	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass Pass Pass Pass
1140 SE 6- 1141 SE 6- 1142 SE 6- 1143 SE 6- 1144 PE 45 1144 PE 45 1146 PE 46 1146 PE 46 1147 PE 45 1148 PE 444 1149 PE 45 1150 PE 47 1151 PE 45 1152 PE 45 1152 PE 45- 1153 PE 45 1154 PE 444 1155 PE 46 1157 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 45 1159 PE 46 1160 PE 47 1161 PE 47 1162 PE 45- 1163 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Con 1166 PE 41 1167 PE 41	6+00 D 6+00 C 6+00 C 6+40 U 45+75 C 46+25 U 46+75 U 45+75 U 45+00 C 44+50 US 46+75 U 47+00 C 45+10 D 45+25 CL 46+75 C 46+75 U 46+75 C 46+75 U 46+75 C 46+75 C 46+75 C 46+75 C 46+75 C 46+75 C 46+75 C 46+75 C 46+70 U 46+70 C 45+15 C 46+00 U 46+40 D 47+00 C 47+00 C	953.8 954.1 954.0 954.0 952.5 952.3 953.6 954.0 953.8 954.0 953.7 953.7 953.7 953.7 953.4 954.1 954.1 953.4 954.1 953.6 953.6	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2075 2014 2065 2041 2083 2038 1997 1994 1992 2129 1996	11.7 12.3 11.6 12.2 11.2 11.6 12.3 12.2 11.8 8.7	99.1 96.2 98.6 97.5 99.5 97.3 95.4 95.2 95.1 101.7	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass Pass Pass Pass
1141 SE 6- 1142 SE 6- 1143 SE 6- 1144 PE 45 1145 PE 46 1146 PE 48 1147 PE 45 1149 PE 45 1150 PE 47 1151 PE 45 1152 PE 45- 1153 PE 45 1155 PE 46 1156 PE 46 1156 PE 46 1157 PE 45 1168 PE 46 1160 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1166 PE 46 1167 PE 41 1167 PE 44	6+75 U 6+00 C 6+40 U 45+75 C 46+25 U 46+75 U 45+00 C 44+50 US 45+10 D 47+00 C 45+10 D 45+25 CL 45+75 C 44+75 US 46+75 U 46+75 C 44+75 US 46+75 C 46+75 C 46+00 U 46+00 U 46+00 U 46+00 C 47+00 C 45+00 C	954.0 954.0 952.5 952.3 952.3 953.6 954.0 953.7 953.7 953.7 953.7 953.4 954.0 953.4 954.0 953.4 953.4 953.4 953.6	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2014 2065 2041 2083 2038 1997 1994 1992 2129 1996	12.3 11.6 12.2 11.2 11.6 12.3 12.3 12.2 11.8 8.7	96.2 98.6 97.5 99.5 97.3 95.4 95.2 95.1 101.7	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass Pass Pass Pass
1142 SE 6- 1143 SE 6- 1144 PE 43- 1144 PE 45- 1145 PE 46- 1147 PE 45- 1148 PE 444- 1149 PE 45- 1150 PE 47- 1151 PE 45- 1152 PE 45- 1153 PE 45- 1154 PE 444- 1155 PE 46- 1156 PE 46- 1157 PE 45- 1160 PE 47- 1161 PE 47- 1162 PE 45- 1163 PE 46- 1161 PE 47- 1162 PE 45- 1163 PE 46- 1161 PE 47- 1162 PE 45- 1163 PE 46- 1166 PE 46- 1166 PE 46- 1166 PE 41- 1166 PE 41- 1166 PE 41- 1166 PE 41- 1167 PE 41-	6+00 C 6+40 U 45+75 C 46+25 U 46+75 U 45+70 C 44+50 US 46+75 U 47+00 C 45+10 D 45+25 CL 45+75 C 44+75 US 46+75 U 45+25 CL 46+50 U 46+75 U 46+75 C 46+0 U 46+0 U 46+0 U 46+0 U 46+0 U 46+0 U 46+0 U 46+0 U 46+0 U 46+0 U	954.0 952.5 952.3 953.6 954.0 954.0 953.8 954.0 953.7 953.7 953.7 953.4 954.1 954.1 953.6 953.6 953.6	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2065 2041 2083 2038 1997 1994 1992 2129 1996	11.6 12.2 11.2 11.6 12.3 12.2 11.8 8.7 10.7	98.6 97.5 99.5 97.3 95.4 95.2 95.1 101.7	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass Pass Pass Pass
1143 SE 6- 1144 PE 45 1145 PE 46 1146 PE 48 1147 PE 45 1148 PE 44 1149 PE 48 1150 PE 45 1151 PE 45 1152 PE 45- 1152 PE 45- 1153 PE 45 1154 PE 444 1155 PE 46 1157 PE 45 1158 PE 46 1157 PE 45 1158 PE 45 1160 PE 47 1161 PE 47 1161 PE 47 1162 PE 45 1163 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1166 PE 46 1167 PE 41	45+75 C 46+25 U 46+75 U 45+00 C 45+00 C 47+00 C 45+10 D 45+25 CL 45+75 C 44+75 US 46+75 C 46+75 C 46+75 C 45+15 C 45+15 C 45+15 C 45+00 U 46+00 U 46+00 U 46+00 U 46+00 C 47+00 C 45+25 CL	952.5 952.3 953.6 954.0 954.0 953.8 954.0 953.7 953.7 953.7 953.4 954.0 953.4 954.1 953.6 953.6 953.6	\$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2041 2083 2038 1997 1994 1992 2129 1996	12.2 11.2 11.6 12.3 12.2 11.8 8.7	97.5 99.5 97.3 95.4 95.2 95.1 101.7	95.0 95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass Pass Pass Pass
1145 PE 48 1146 PE 48 1147 PE 45 1148 PE 444 1149 PE 46 1150 PE 47 1151 PE 45 1152 PE 45 1152 PE 45 1154 PE 444 1155 PE 46 1157 PE 46 1156 PE 46 1160 PE 47 1161 PE 47 1162 PE 45 1163 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1166 PE 4 1167 PE 4	46+25 U 48+75 U 48+75 U 45+00 C 44+50 US 46+75 U 47+00 C 45+10 D 45+25 CL 45+75 C 44+75 US 46+50 U 46+75 C 45+15 C 45+15 C 45+0 U 46+0 U 46+0 U 46+0 U 46+0 U 46+0 C 47+00 C 46+0 C	952.3 953.6 954.0 954.0 954.0 953.8 954.0 953.7 953.7 953.4 954.0 953.4 954.0 953.6 953.6 953.6	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	2083 2038 1997 1994 1992 2129 1996	11.2 11.6 12.3 12.2 11.8 8.7 10.7	99.5 97.3 95.4 95.2 95.1 101.7	95.0 95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass Pass Pass
1146 PE 48 1147 PE 45 1148 PE 44 1149 PE 48 1150 PE 47 1151 PE 45 1152 PE 45 1154 PE 44 1155 PE 46 1157 PE 46 1156 PE 46 1157 PE 45 1158 PE 46 1159 PE 46 1160 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1166 PE4 1167 PE 41 1167 PE 41	46+75 U 45+00 C 44+50 US 46+75 U 47+00 C 45+10 D 45+25 CL 45+75 C 44+75 US 46+50 U 46+75 U 46+75 C 45+15 C 45+15 C 45+00 U 46+40 D 47+00 C 47+00 C 47+00 C	953.6 954.0 954.0 953.8 953.8 953.7 953.7 953.7 953.4 954.1 954.1 954.1 953.6 953.6	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1 9.1	2038 1997 1994 1992 2129 1996	11.6 12.3 12.2 11.8 8.7 10.7	97.3 95.4 95.2 95.1 101.7	95.0 95.0 95.0 95.0 95.0	Pass Pass Pass Pass Pass
1147 PE 45 1148 PE 444 1149 PE 446 1150 PE 47 1151 PE 45 1152 PE 45: 1153 PE 45 1154 PE 444 1155 PE 46 1156 PE 46 1157 PE 45 1159 PE 45 1160 PE 46 1160 PE 46 1161 PE 47 1162 PE 45: 1163 PE 46 1164 Con 1165 Con 1166 PE 1166 PE 1167 PE	45+00 C 44+50 US 46+75 U 47+00 C 45+10 D 45+25 CL 45+75 C 44+75 US 46+75 C 45+15 C 45+15 C 45+15 C 45+00 U 46+40 D 47+00 C 45+25 CL	954.0 954.0 953.8 953.7 953.7 953.7 952.8 954.0 953.4 954.0 953.6 953.6 953.2	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1 9.1	1997 1994 1992 2129 1996	12.3 12.2 11.8 8.7 10.7	95.4 95.2 95.1 101.7	95.0 95.0 95.0 95.0	Pass Pass Pass Pass
1148 PE 444 1149 PE 46 1149 PE 46 1150 PE 47 1151 PE 45 1152 PE 45 1153 PE 45 1154 PE 444 1155 PE 46 1156 PE 46 1157 PE 45 1158 PE 45 1160 PE 46 1160 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1165 Con 1166 PE 1167 PE	44+50 US 46+75 U 47+00 C 45+10 D 45+25 CL 45+75 C 44+75 US 46+50 U 46+75 C 45+15 C 45+15 C 45+00 U 46+00 U 46+00 C 47+00 C 47+00 C	954.0 ·	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1 9.1	1994 1992 2129 1996	12.2 11.8 8.7 10.7	95.2 95.1 101.7	95.0 95.0 95.0	Pass Pass Pass
1149 PE 48 1150 PE 47 1151 PE 48 1152 PE 45- 1153 PE 45- 1154 PE 444 1155 PE 46 1156 PE 48 1157 PE 45 1158 PE 45 1158 PE 45 1159 PE 46 1160 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Con 1165 Con 1166 PE4 1167 PE 41 1167 PE 41	46+75 U 47+00 C 45+10 D 45+10 D 45+25 CL 45+75 C 44+75 US 46+75 US 46+75 C 45+15 C 45+15 C 45+15 C 46+40 D 47+00 C 45+25 CL	953.8 954.0 953.7 953.7 952.8 954.0 953.4 954.1 954.0 953.6 953.2 953.5	\$ \$ \$ \$ \$ \$ \$ \$ \$	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094 2094 2094	9.1 9.1 9.1 9.1	1992 2129 1996	11.8 8.7 10.7	95.1 101.7	95.0 95.0	Pass Pass
1150 PE 47 1151 PE 45 1151 PE 45 1152 PE 45- 1153 PE 45- 1154 PE 444- 1155 PE 46 1156 PE 46 1157 PE 45 1159 PE 46 1160 PE 46 1160 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Con 1165 Con 1166 PE4 1167 PE4	47+00 C 45+10 D 45+25 CL 45+75 C 44+75 US 46+50 U 46+75 C 45+15 C 45+15 C 45+00 U 46+40 D 47+00 C 45+25 CL	954.0 953.7 953.7 953.7 952.8 954.0 953.4 954.1 954.0 953.6 953.2 953.5	5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094 2094	9.1 9.1 9.1	2129 1996	8.7 10.7	101.7	95.0	Pass
1151 PE 45 1152 PE 45- 1153 PE 45- 1154 PE 44- 1155 PE 46 1156 PE 46 1157 PE 45 1158 PE 45 1159 PE 46 1160 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Con 1166 PE4 1167 PE 41 1167 PE 41 1167 PE 41	45+10 D 45+25 CL 45+75 C 44+75 US 46+50 U 46+75 C 45+15 C 45+15 C 45+00 U 46+00 U 46+40 D 47+00 C 45+25 CL	953.7 953.7 952.8 954.0 953.4 954.1 954.0 953.6 953.2 953.5	\$ \$ \$ \$ \$ \$ \$	0.2 0.2 0.2 0.2 0.2 0.2 0.2	2094 2094 2094 2094	9.1 9.1	1996	10.7			
1152 PE 45- 1153 PE 45- 1154 PE 444- 1155 PE 46- 1156 PE 46- 1157 PE 45- 1158 PE 45- 1158 PE 45- 1159 PE 46- 1160 PE 47- 1161 PE 47- 1162 PE 45- 1163 PE 46- 1164 Con- 1166 PE4- 1167 PE 41- 1167 PE 41- 1168 PE4- 1168 PE4-	45+25 CL 45+75 C 44+75 US 46+50 U 46+75 C 45+15 C 45+15 C 46+00 U 46+40 D 47+00 C 45+25 CL	953.7 952.8 954.0 953.4 954.1 954.0 953.6 953.2 953.5	S S S S S	0.2 0.2 0.2 0.2 0.2	2094 2094 2094	9.1			95.3		
1153 PE 45 1154 PE 444 1155 PE 46 1156 PE 45 1157 PE 45 1159 PE 45 1159 PE 46 1160 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1166 PE 1166 PE 1167 PE	45+75 C 44+75 US 46+50 U 46+75 C 45+15 C 45+50 C 46+00 U 46+40 D 47+00 C 45+25 CL	952.8 954.0 953.4 954.1 954.0 953.6 953.2 953.5	\$ \$ \$ \$	0.2 0.2 0.2 0.2	2094 2094			400		95.0 95.0	Pass
1154 PE 444 1155 PE 46 1156 PE 46 1157 PE 45 1158 PE 45 1159 PE 45 1160 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1166 PE4 1167 PE4 1167 PE4	44+75 US 46+50 U 46+75 C 45+15 C 45+50 C 46+00 U 46+40 D 47+00 C 45+25 CL	954.0 953.4 954.1 954.0 953.6 953.2 953.5	\$ \$ \$	0.2 0.2 0.2	2094	9.1	2056	10.3	98.2 96.5	95.0 95.0	Pass Pass
1155 PE 46 1156 PE 46 1157 PE 45 1158 PE 45 1159 PE 46 1160 PE 47 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Con 1166 PE4 1167 PE4 1167 PE4	46+50 U 46+75 C 45+15 C 45+50 C 46+00 U 46+40 D 47+00 C 45+25 CL	953.4 954.1 954.0 953.6 953.2 953.5	\$ \$ \$	0.2 0.2			2021	12.0 11.4	97.2	95.0	Pass
1156 PE 48 1157 PE 45 1158 PE 45 1159 PE 46 1160 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1165 Con 1166 PE4 1167 PE4	46+75 C 45+15 C 45+50 C 46+00 U 46+40 D 47+00 C 45+25 CL	954.1 954.0 953.6 953.2 953.5	S S	0.2	2094	9.1	2036	10.9	99.6	95.0	Pass
1157 PE 45 1158 PE 45 1159 PE 46 1160 PE 46 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1165 Con 1166 PE4 1167 PE4	45+15 C 45+50 C 46+00 U 46+40 D 47+00 C 45+25 CL	954.0 953.6 953.2 953.5	s		2004	9.1 9.1	2086 2060	10.8	98.4	95.0	Pass
1158 PE 45 1159 PE 46 1160 PE 44 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1165 Con 1166 PE4 1167 PE4 1168 PE4	45+50 C 46+00 U 46+40 D 47+00 C 45+25 CL	953.6 953.2 953.5			2094 2094	9.1	1999	13.2	95.4	95.0	Pass
1159 PE 48 1160 PE 46 1161 PE 47 1161 PE 47 1162 PE 45 1163 PE 46 1164 Con 1165 Con 1166 PE4 1167 PE4 1168 PE4	46+00 U 46+40 D 47+00 C 45+25 CL	953.2 953.5	<u> </u>	0.2	2094	9.1	2051	11.7	97.9	95.0	Pass
1160 PE 46 1161 PE 47 1162 PE 45- 1163 PE 46 1164 Con 1165 Con 1166 PE4 1167 PE4 1168 PE4	46+40 D 47+00 C 45+25 CL	953.5	S	0.2	2094	9.1	2006	12.9	95,8	95.0	Pass
1161 PE 47 1162 PE 45- 1163 PE 46 1164 Con 1165 Con 1166 PE4 1167 PE4 1168 PE4	47+00 C 45+25 CL		S	0.2	2094	9.1	2038	12.1	97.3	95.0	Pass
1162 PE 45- 1163 PE 46- 1164 Con 1165 Con 1166 PE4- 1167 PE4- 1168 PE4	45+25 CL		S	0.2	2094	9.1	2017	11.3	96.3	95.0	Pass
1163 PE 46 1164 Con 1165 Con 1166 PE4 1167 PE4 1168 PE4		954.1	S	0.2	2094	9.1	2074	10.9	99.0	95.0	Pass
1164 Con 1165 Con 1166 PE4 1167 PE4 1168 PE4	NETUD II	953.5	s	0.2	2094	9.1	2078	11.4	99.2	95.0	Pass
1165 Corr 1166 PE4 1167 PE4 1168 PE4	Corner 2	953.5	s	0.2	2094	9.1	1995	12.0	95.3	95.0	Pass
1166 PE4 1167 PE4 1168 PE4	Corner 2	953.9	Š	0.2	2094	9,1	2023	11.0	96,6	95.0	Pass
1167 PE4 1168 PE4	E45+50	953.8	Š	0.2	2094	9,1	2051	12.0	97.9	95.0	Pass
1168 PE4	E46+00	953.5	š	0.2	2094	9.1	2067	11.7	98.7	95.0	Pass
	E46+50	953.4	S	0.2	2094	9.1	2043	11.9	97.5	95.0	Pass
	E45+50	954.1	S	0.2	2094	9.1	2070	11.2	98.8	95.0	Pass
	E46+00	953.8	S	0.2	2094	9.1	2125	11.0	101.5	95.0	Pass
						Minimum	1990	5.2	95.0		
						Maximum	2244	14.2	107.1		<u> </u>
						Average	2059	10.0	98.3		<u> </u>
					<u> </u>						
ments:											
ber of Tests:					Kg/m³						
			R-S6-ZS-01/0	8	2080	8.0					
			R-S6-ZS-02/0	8	2080						
	T		R-S6-ZS-03/0	8	2070						
			R-S6-ZS-04/0		2140			·			
			R-S6-ZS-05/0		2070						
			R-S6-ZS-06/0		2080						
			R-S6-ZS-07/0		2150						
			R-S6-ZS-08/0		2070						
			R-S6-ZS-09/0		2120						
			C-S6-ZS-01/0		2140						
	I		C-S6-ZS-02/0		2080						
			C-S6-ZS-03/0		2070						
			C-S6-ZS-04/0		2090 2100						
			C-S6-ZS-05/0		2160						
			C-S6-ZS-06/0 C-S6-ZS-07/0		2010					, , , , , , , , , , , , , , , , , , , ,	
					2010						
				average min	2010				w		
				max	2160						

APPENDIX B2

ZONE U RECORD

(Page B2-1)

M:\101\00001\23\4\Data\S6a Field comp Dwnld\S6a\F12 - Nuclear Densometer Readings\\Field Compaction.xls\Appendix 82 Rev'd 4-Dec-06											
Knight Piésold			FIELD COMPACTION TESTS (Metric)								101-01/23
			NUCLEAR GAUGE						DATE: May to October 2008		lober 2008
					LABORATORY			FIE	D MEASUREMENTS		
TEST NO.	Location	Elevation	Zone	Test	Max. Dry	Optimum	Dry	Moisture		Compaction	Pass
		(m)		Depth	Density	Moisture	Density	Content	Compaction	Specification	or
				(m)	(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	Fail
1254	PE 45+15 US	951.0	U	0.2	1675	16.5	1881	4.2	112.3	95.0	Pass
1255	PE 43+50 US	951.0	U	0.2	1675	16.5	1792	7.2	107.0	95.0	Pass
1256	PE 42+00 US	951.0	U	0.2	1675	16.5	1739	6.4	103.8	95.0	Pass
1257	PE 41+00 US	951.0	U	0,2	1675	16.5	1924	6.4	114.9	95.0	Pass
1282	SE 6+15 D	951.0	U	0,2	1675	16.5	1832	5.8	109.4	95.0	Pass
1283	SE 6+75 D	951.0	U	0.2	1675	16.5	1987	7.4	118.6	95.0	Pass
1284	SE 7+40 D	951.0	U	0.2	1675	16.5	1846	4,8	110.2	95.0	Pass
1285	SE 8+00 D	951.0	U	0.2	1675	16.5	1657	6.4	98.9	95,0	Pass
1286	SE 8+30 D	951.0	U	0.2	1675	16.5	1769	5.1	105.6	95.0	Pass
1287	SE 9+00 D	951.0	U	0.2	1675	16.5	1746	9.9	104.2	95.0	Pass
1288	SE 9+85 D	951.0	U	0.2	1675	16.5	1761	7.7	105.1	95.0	Pass
1289	SE 10+80 D	951.0	U	0.2	1675	16.5	1754	10.1	104.7	95.0	Pass
1290	PE 41+75 US	951.0	U	0.2	1675	16.5	1702	8.3	101.6	95.0	Pass
1291	PE 40+50 US	951.0	υ	0.2	1675	16.5	1710	7.2	102.1	95.0	Pass
1292	PE 38+75 US	951.0	υ	0.2	1675	16.5	1813	7.3	108.2	95.0	Pass
1293	PE 37+75 U	951.0	U	0.2	1675	16.5	1710	7.9	102.1	95.0	Pass
1294	PE 36+75 US	951.0	U	0.2	1675	16,5	1854	8.5	110.7	95,0	Pass

Re√d 4-Dec-08

Comments:	Proctor No.:	Proctor Description:					
Number of Tests:		Kg/m³	M.C.	95%			
17	R-S6-ZU-02/08	1690	16.0	1606			
	R-S6-ZU-03/08	1660	17.0	1577			

Minimum

Maximum

Median

Average

Standard Deviation

1657.0

1987.0

1769.0

1792.8

4.2

10.1

7.2 1.6 7.1

98.9

118.6

105.6 5.2

107.0

Technician: DS: MS:____ Gauge No: MD70208639 Daily Rep.#_

APPENDIX C

PIEZOMETER FIGURES

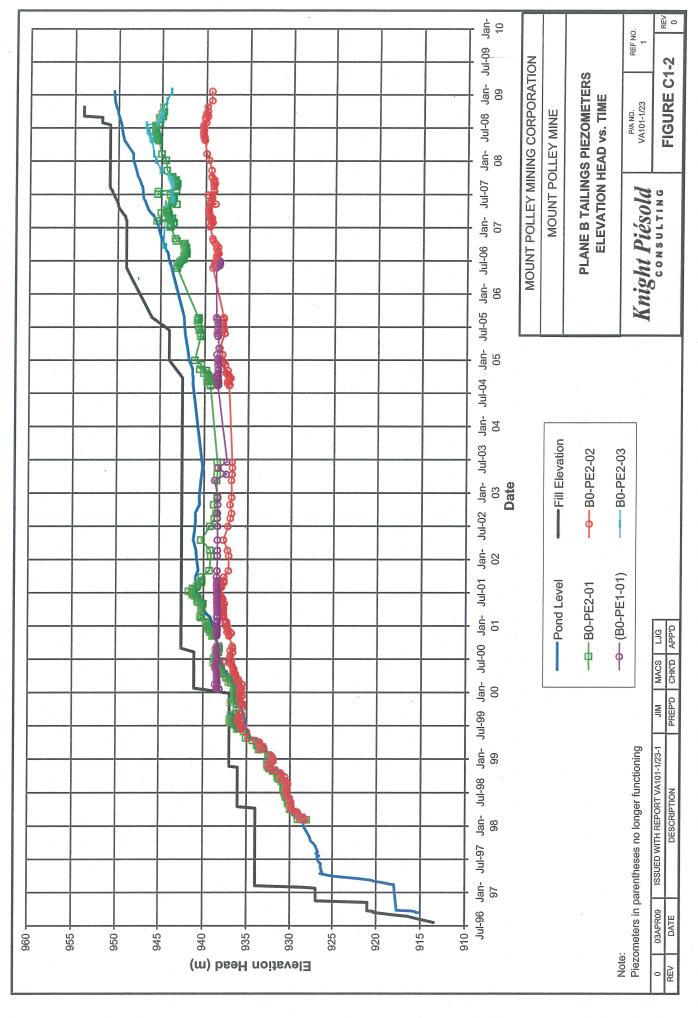
Appendix C1 Tailings Piezometers

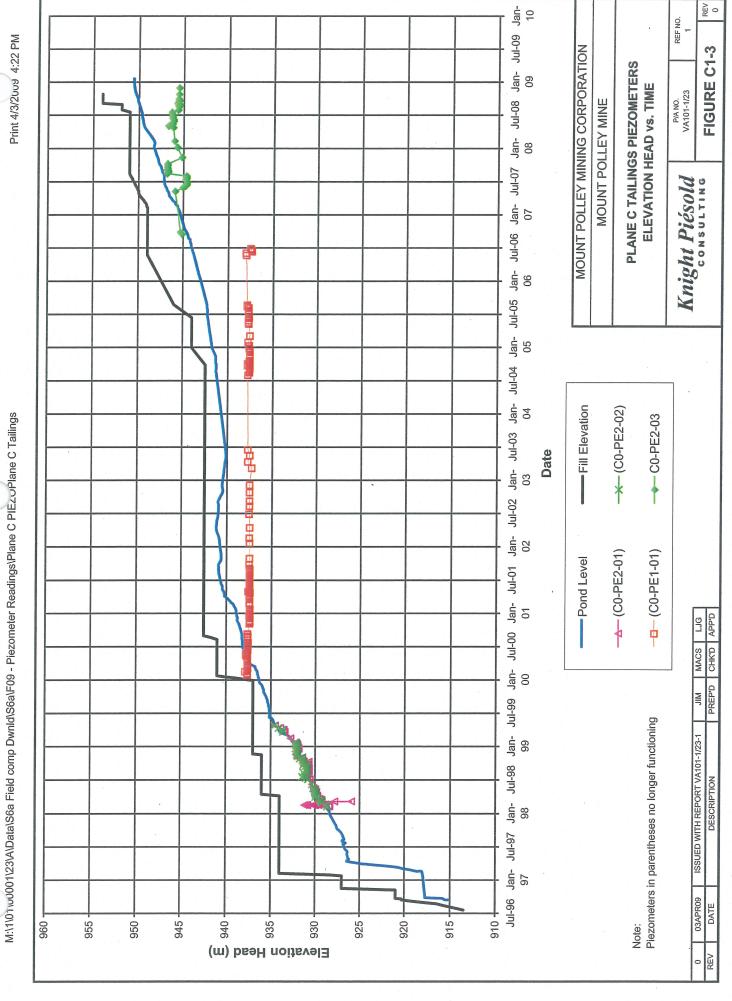
Appendix C2 Foundation Piezometers

Appendix C3 Fill Piezometers

Appendix C4 Drain piezometers

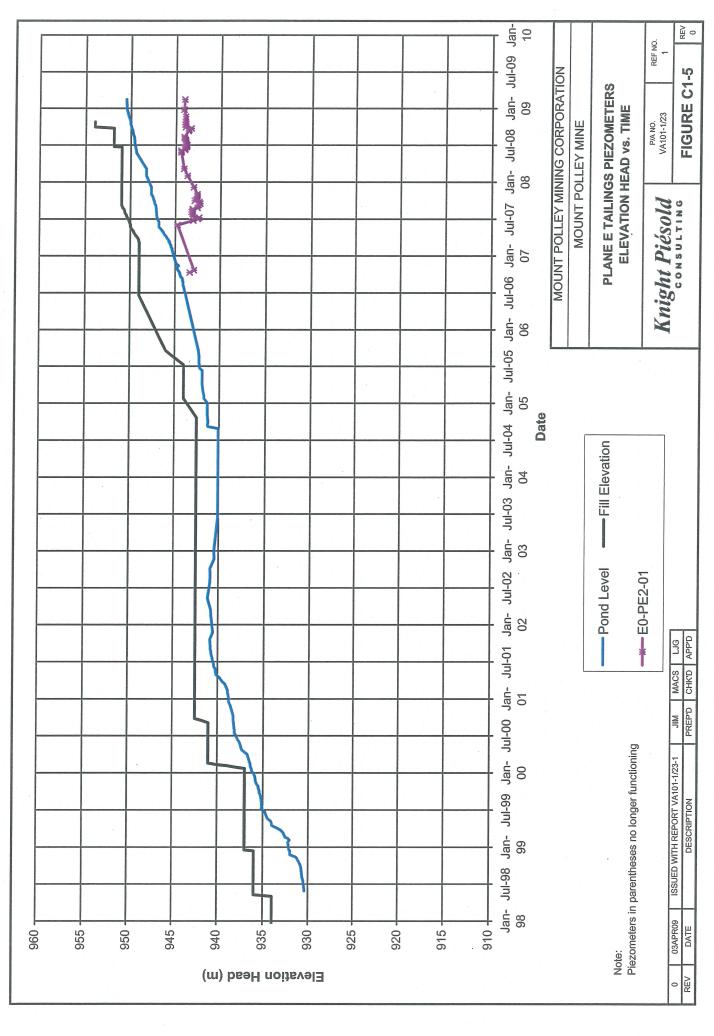
APPENDIX C1


TAILINGS PIEZOMETERS


(Pages C1-1 to C1-9)

Print 4/3,2009 4:08 PM

M:\1\01\0vv001\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane A PIEZOPlane A Tamıgs



Print 4/3/2009 4:26 PM

M:\1\01\00001\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane D PIEzoPlane D Tailings

Oct-09 REV 0 REF NO. Print 7/6/20099:12 AM FIGURE C1-6 Oct-08 Apr-09 MOUNT POLLEY MINING CORPORATION PLANE F TAILINGS PIEZOMETERS **ELEVATION HEAD vs. TIME** P/A NO. VA101-1/23 MOUNT POLLEY MINE Apr-08 Knight Piésold Oct-07 Apr-07 Oct-06 Oct-05 Apr-06 -- Pond Level ---- F0-PE2-01 ------ Fill El. (m) M:\1\c___J001\23\A\Data\S6a Field comp Dwnld\S6a\F09 - Piezometer Readings\Plane F Pı___JPlane F Tailings Oct-04 Apr-05 Date Oct-02 Apr-03 Oct-03 Apr-04 JIM MACS LJG PREP'D CHK'D APP'D Apr-01 Oct-01 Apr-02 ISSUED WITH REPORT VA101-1/23-1 DESCRIPTION Oct-00 03APR09 910 + DATE 955 950 945 940 920 915 096 935 930 925 Elevation Head (m) REV 0

O O 18-Oct-REF NO. s/20095:24 PM Rev'd: 31-Jan-08 MOUNT POLLEY MINING CORPORATION FIGURE C1-7 19-Apr-PLANE G TAILINGS PIEZOMETERS 60 **ELEVATION HEAD vs. TIME** P/A NO. VA101-1/23 MOUNT POLLEY MINE 18-Oct-80 18-Apr-08 Knight Piésold 19-Oct-07 19-Apr-07 19-Apr- 18-Oct- 19-Apr- 18-Oct-90 90 05 Date M:\\\0\;____J01\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane G PIEZOPlane G ____igs 90 -Fill Elevation 18-Apr- 18-Oct-9 JIM MACS LJG PREP'D CHK'D APP'D 19-Oct-- Pond Level -*-G0-PE2-01 19-Apr-18-Oct-ISSUED WITH REPORT VA101-1/23-1 19-Apr-DESCRIPTION 18-Oct-0 19-Apr-03APR09 DATE 910 + 955 945 940 935 915 096 950 930 925 920 Elevation Head (m) REV 0

Oct-09 REV 0 REF NO. J095:26 PM Rev'd 31-Jan-08 FIGURE C1-8 MOUNT POLLEY MINING CORPORATION Apr-09 PLANE H TAILINGS PIEZOMETERS **ELEVATION HEAD vs. TIME** P/A NO. VA101-1/23 MOUNT POLLEY MINE Oct-08 Apr-08 Knight Piésold Oct-07 Apr-07 Oct-06 Apr-06 ---Fill Elevation Apr-05 Oct-05 Date Oct-04 Pond Level -A-H0-PE2-01 Apr-04 JIM MACS LJG PREP'D CHK'D APP'D Oct-03 Apr-03 Oct-02 Piezometers in parentheses no longer functioning ISSUED WITH REPORT VA101-1/23-1 Apr-02 DESCRIPTION Oct-01 Apr-01 03APR09 910 + DATE 915 096 955 950 945 940 935 925 920 930 Elevation Head (m) Note: REV 0

Print.

M:\\1\01\cdots\01\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane H PIEZOPlane H i c....gs

Sep-09 REV 0 REF NO. FIGURE C1-9 MOUNT POLLEY MINING CORPORATION Sep-07 Mar-08 Sep-08 Mar-09 PLANE I TAILINGS PIEZOMETERS **ELEVATION HEAD vs. TIME** MOUNT POLLEY MINE Knight Piésold Mar-07 Sep-06 Mar-06 Sep-04 Mar-05 Sep-05 Fill Elevation Date - Pond Level 10-PE2-01 Apr-04 PREP'D CHK'D APP'D JIM MACS LJG Oct-03 Apr-03 Piezometers in parentheses no longer functioning Oct-02 ISSUED WITH REPORT VA101-1/23-1 DESCRIPTION Apr-02 Oct-01 Apr-01 03APR09 910 + DATE 955 945 940 096 935 915 950 930 925 920 Note: Elevation Head (m) 0 REV

Print. _____ 20095:30 PM

J01/23/A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane I PIEZOPlane I Ta...

M:\1\6

APPENDIX C2

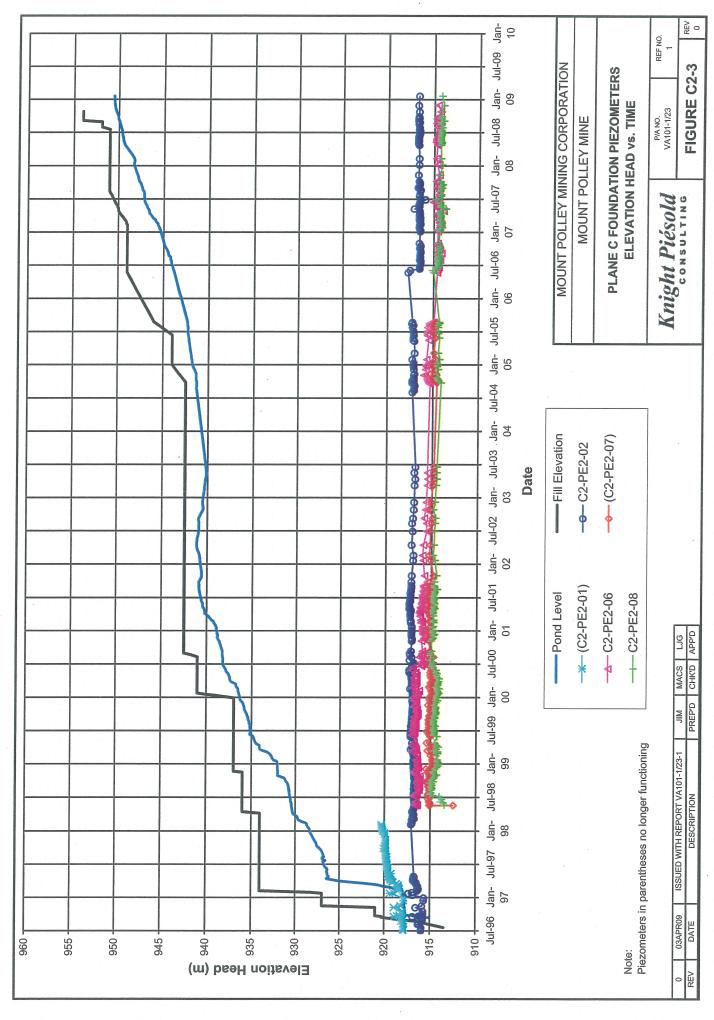
FOUNDATION PIEZOMETERS

(C2-1 to C2-7)

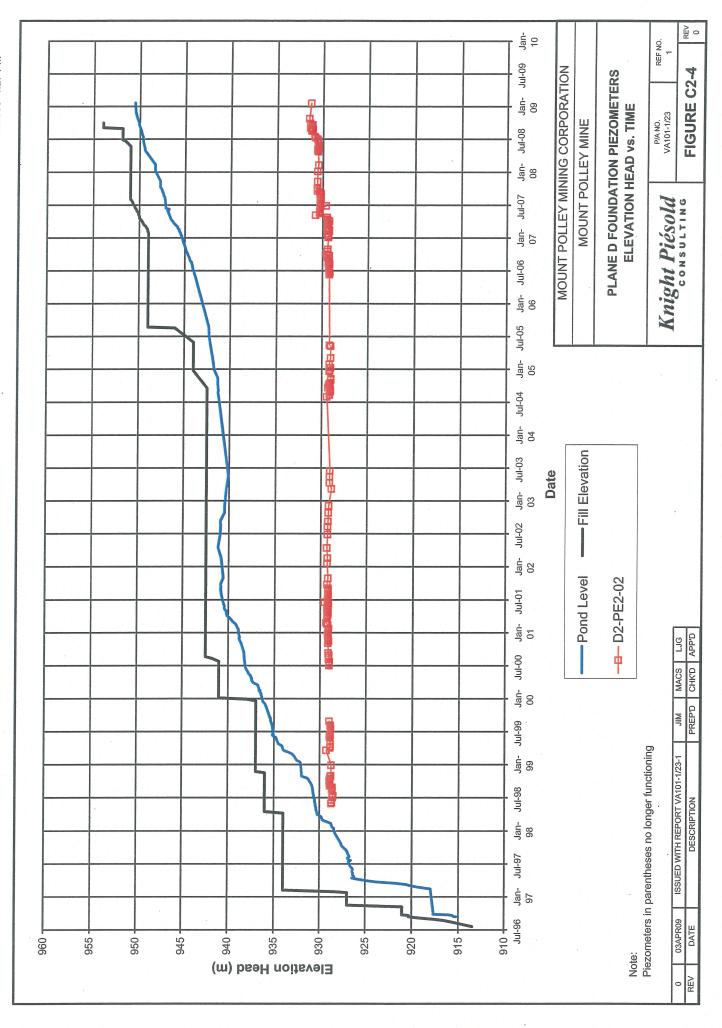
J01/23/A\Data\S6a Field comp Dwnld\S6a\F09 - Piezometer Readings\Plane A PIEZOPlane A F.....dation

M:\1\0.

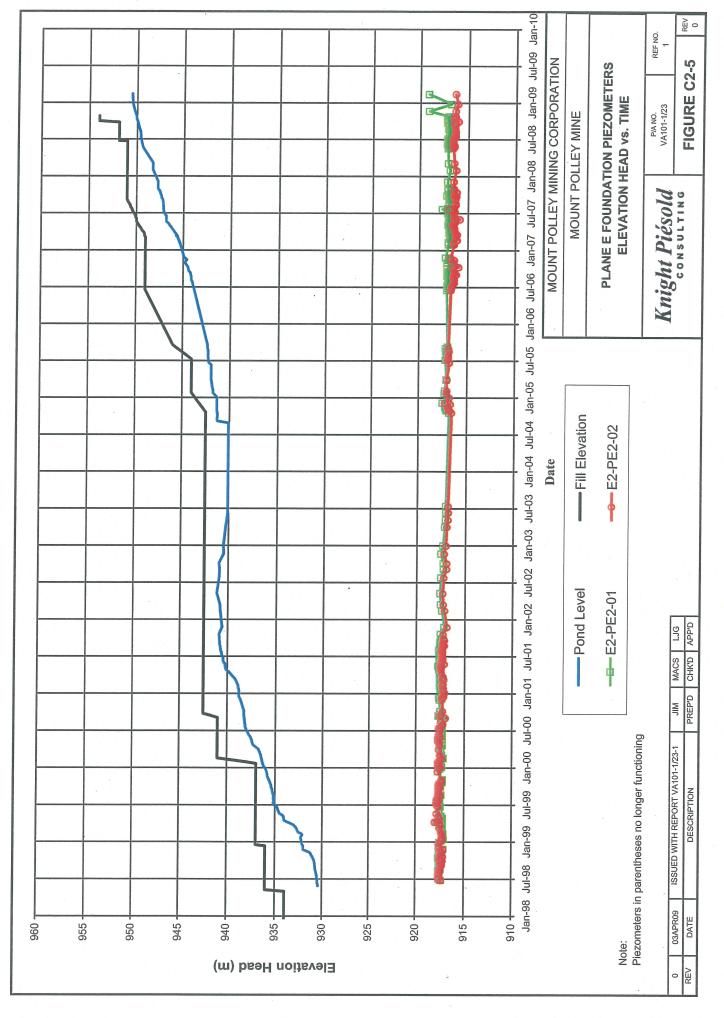
Dec-09 REF NO. 늘 MOUNT POLLEY MINING CORPORATION FIGURE C2-1 PLANE A FOUNDATION PIEZOMETERS Jan-09 **ELEVATION HEAD vs. TIME** P/A NO. VA101-1/23 -jn 08 MOUNT POLLEY MINE Jan-08 Aug-07 Knight Piésold Feb-07 Aug-06 Mar-06 Sep-05 Sep- Mar-04 05 Mar-04 Oct-Fill Elevation --- (A2-PE2-02) Oct- Apr-02 03 Date May- Nov- May- Nov- May-00 00 01 01 02 -*-(A2-PE2-01) -A-(A2-PE2-06) -Pond Level MACS LJG CHK'D APP'D Jun- Dec- 1 99 99 PREP'D MIS ISSUED WITH REPORT VA101-1/23-1 Dec-98 -Inc 88 DESCRIPTION Jan-98 Jul-97 Jan-97 03APR09 -Inc 96 DATE 910 + 940 -925 915 945 950 920 935 930 955 REV Elevation Head (m)


REV 0

Print 7/6/2009 9:09 AM


/23/A\Data\S6a Field comp Dwnld\S6a\F09 - Piezometer Readings\Plane B PIEZO

M:\1\01\


M:\\\o الازرك\001\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane C PIE

J001\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane D PIEzzylane D Foundation M:\1\6

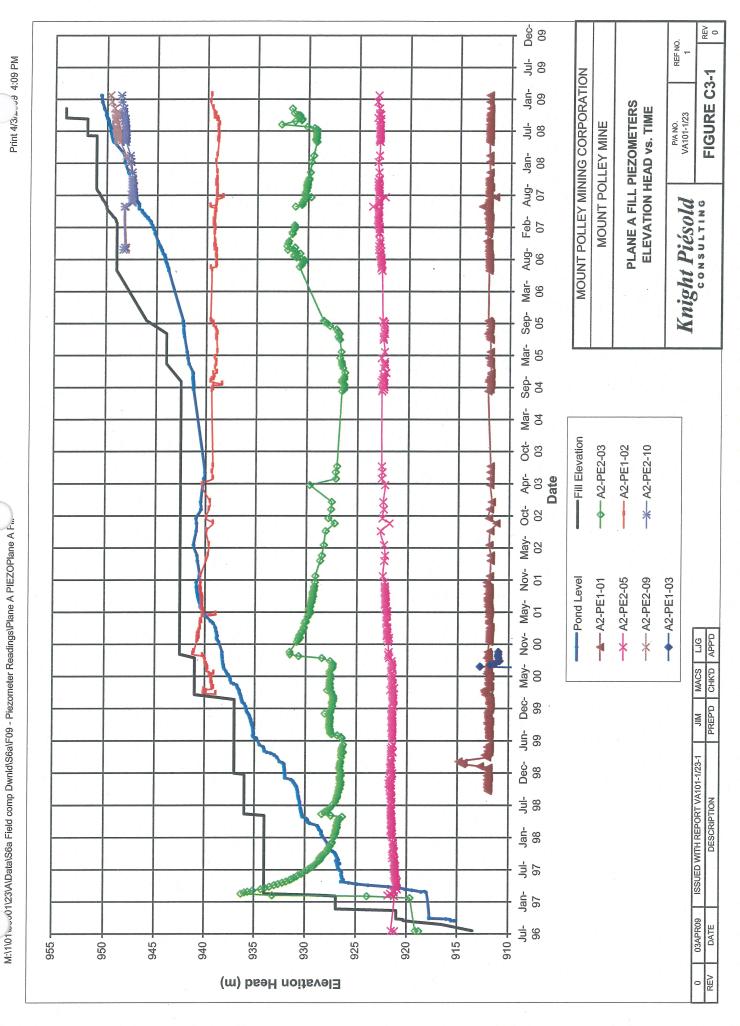
Print 4/3/2009 5:10 PM

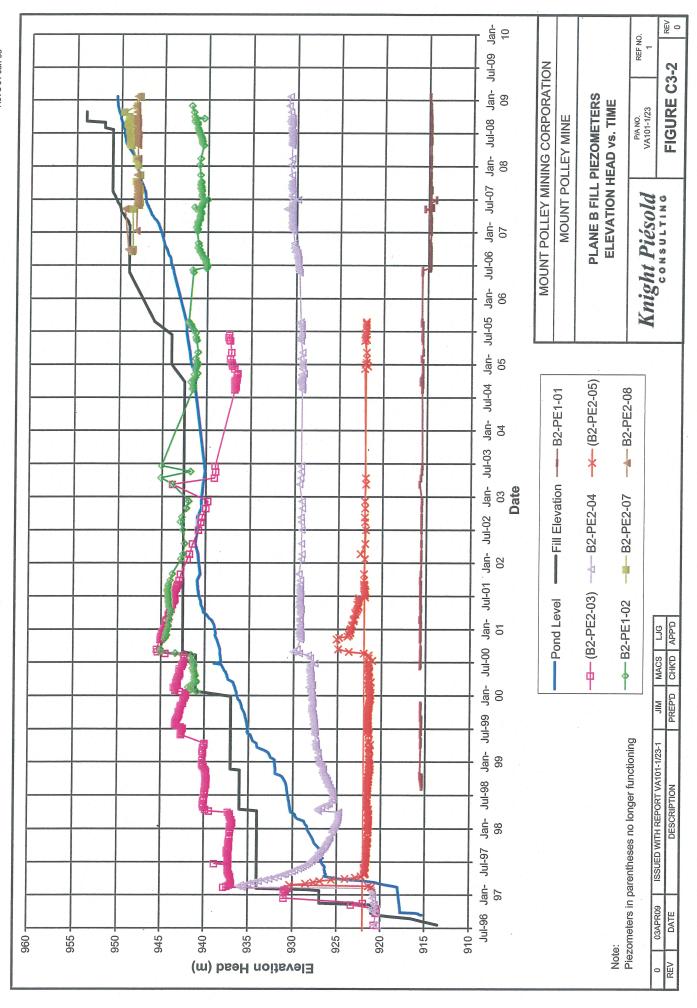
M:\1\

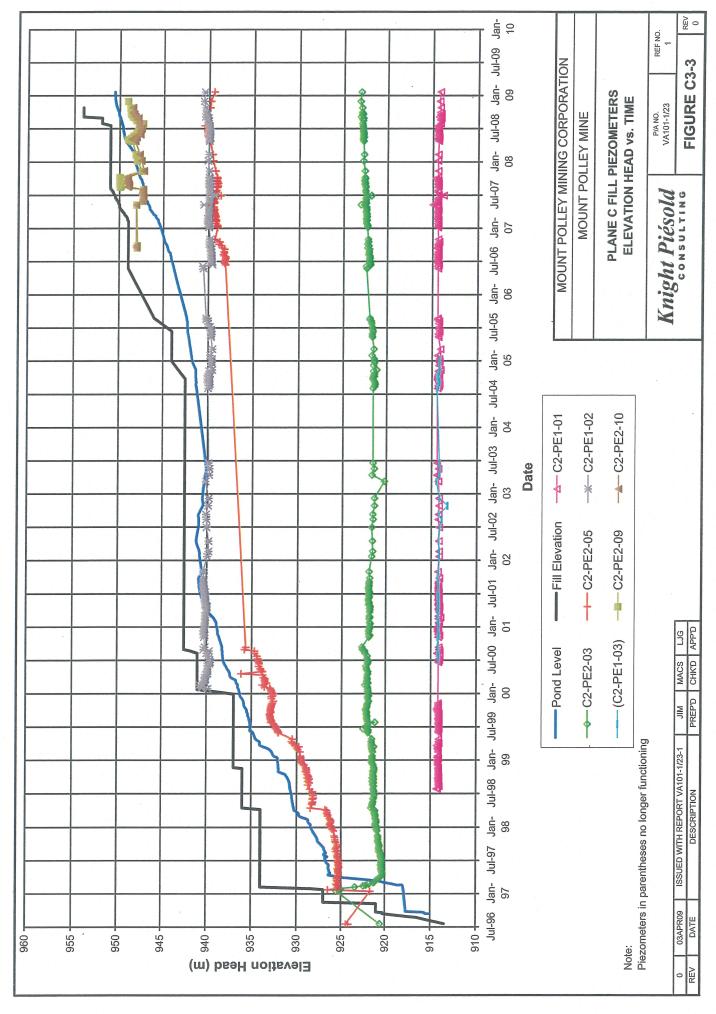
Sep-09 REV 0 REF NO. FIGURE C2-7 MOUNT POLLEY MINING CORPORATION Sep-07 Mar-08 Sep-08 Mar-09 PLANE I FOUNDATION PIEZOMETERS **ELEVATION HEAD vs. TIME** P/A NO. VA101-1/23 MOUNT POLLEY MINE Knight Piesold Mar-07 Sep-06 Mar-06 Mar-05 Sep-05 Fill Elevation Date Sep-04 -Pond Level -*-12-PE2-03 Apr-04 JIM MACS LJG PREP'D CHK'D APP'D Oct-03 Apr-03 Note: Piezometers in parentheses no longer functioning Oct-02 ISSUED WITH REPORT VA101-1/23-1 Apr-02 DESCRIPTION Oct-01 Apr-01 03APR09 DATE 910 + 945 940 925 920 915 096 955 950 935 930 Elevation Head (m) 0 REV

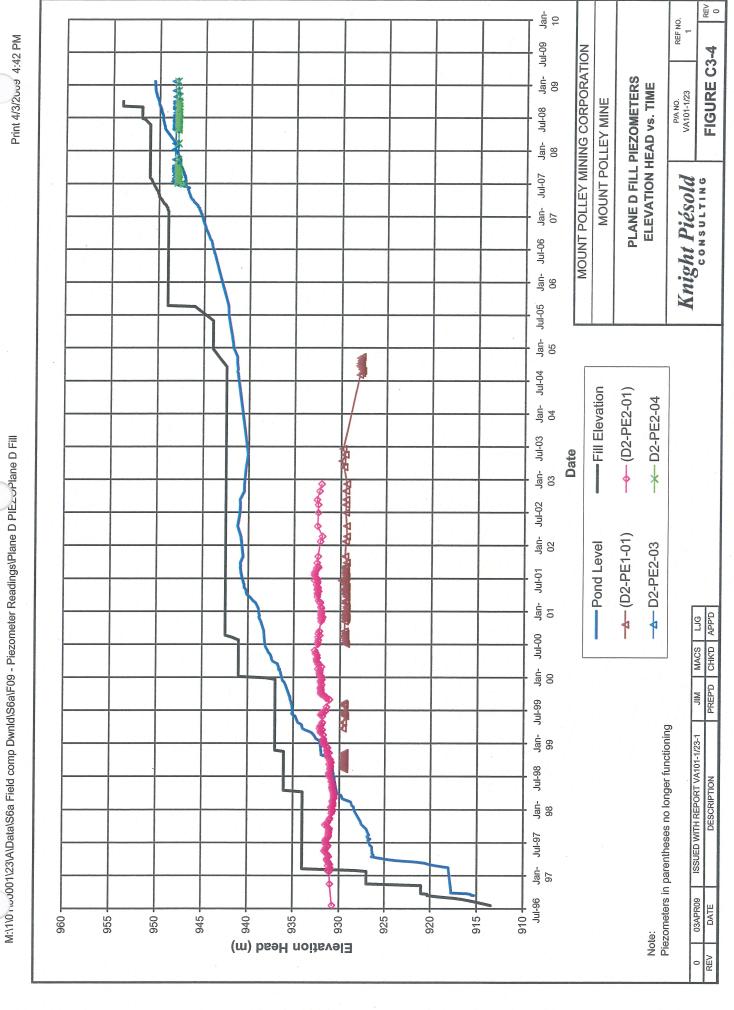
Print: 4, ____ J095:32 PM

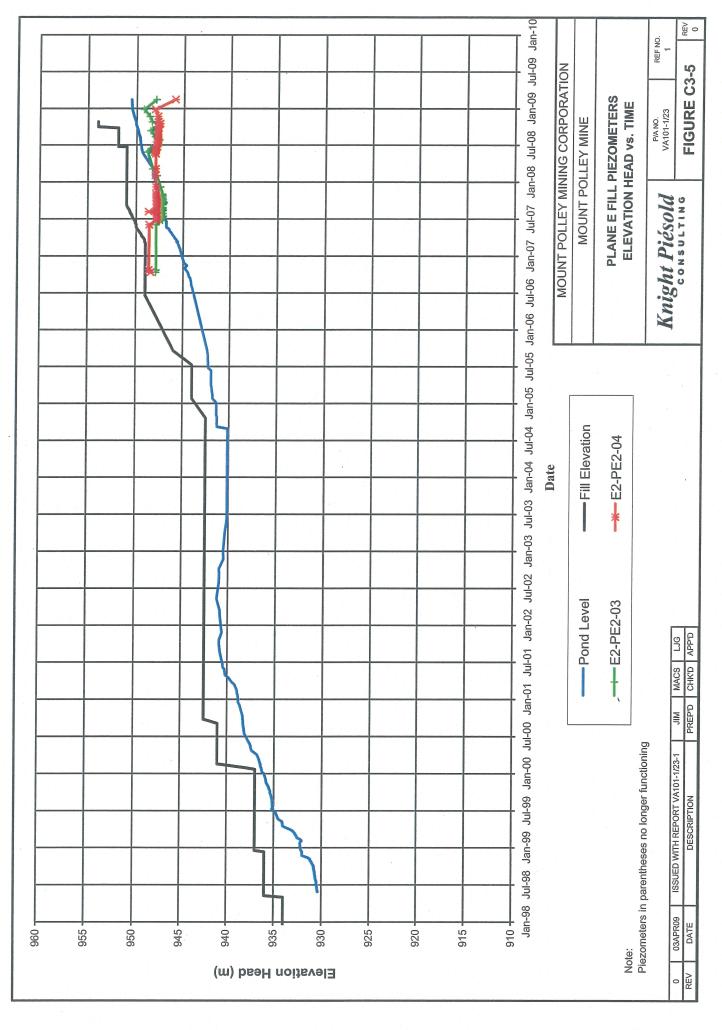
ucijon


M:\\\01\circ J\1\23\A\Data\S6a Field comp Dwnld\S6a\F09 - Piezometer Readings\Plane | PIEZOPlane | Fou...


APPENDIX C3


FILL PIEZOMETERS


(C3-1 to C3-9)


M:\1\01......J1\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane B PIEZOPlane B P...

M:\1\0001\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane E PIL___Plane E Fill

REV 0 18-Oct-60 REF NO. s/20095:25 PM Rev'd: 31-Jan-08 MOUNT POLLEY MINING CORPORATION FIGURE C3-7 19-Apr-60 PLANE G FILL PIEZOMETERS **ELEVATION HEAD vs. TIME** P/A NO. VA101-1/23 MOUNT POLLEY MINE 18-Oct-08 18-Apr-08 Knight Piésold 19-Oct-07 19-Apr-07 18-Oct-90 19-Apr- 18-Oct- 19-Apr-90 ----Fill Elevation —— G2-PE2-02 05 Date 05 M:\1\01.01\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane G PIEZOPlane G 1.... 18-Oct-9 ---- Pond Level --- G2-PE2-01 18-Apr-9 JIM MACS LJG PREP'D CHK'D APP'D 19-Oct-03 18-Oct- 19-Apr-ISSUED WITH REPORT VA101-1/23-1 19-Apr-DESCRIPTION 18-Oct-19-Apr-0 03APR09 910 + DATE 955 945 915 096 950 940 935 930 925 920 Elevation Head (m) 0 REV

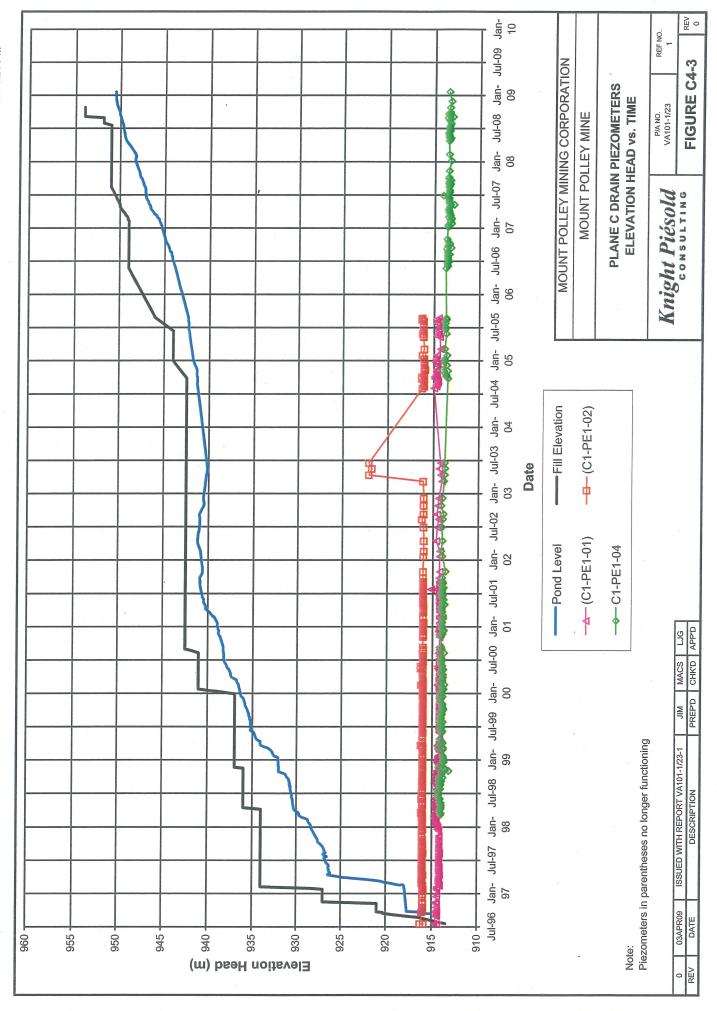
Oct-09 REV 0 REF NO. FIGURE C3-8 MOUNT POLLEY MINING CORPORATION Apr-09 PLANE H FILL PIEZOMETERS **ELEVATION HEAD vs. TIME** P/A NO. VA101-1/23 Oct-08 MOUNT POLLEY MINE Apr-08 Knight Piesold Oct-07 Apr-07 Oct-06 Oct-04 Apr-05 Oct-05 Apr-06 Fill Elevation -*- H2-PE2-02 Date - Pond Level -X-H2-PE2-01 Oct-03 Apr-04 JIM MACS LJG PREP'D CHK'D APP'D Oct-02 Apr-03 Piezometers in parentheses no longer functioning ISSUED WITH REPORT VA101-1/23-1 Apr-02 DESCRIPTION Oct-01 Apr-01 03APR09 910 + DATE 960 955 950 945 940 935 915 930 925 920 Elevation Head (m) REV 0

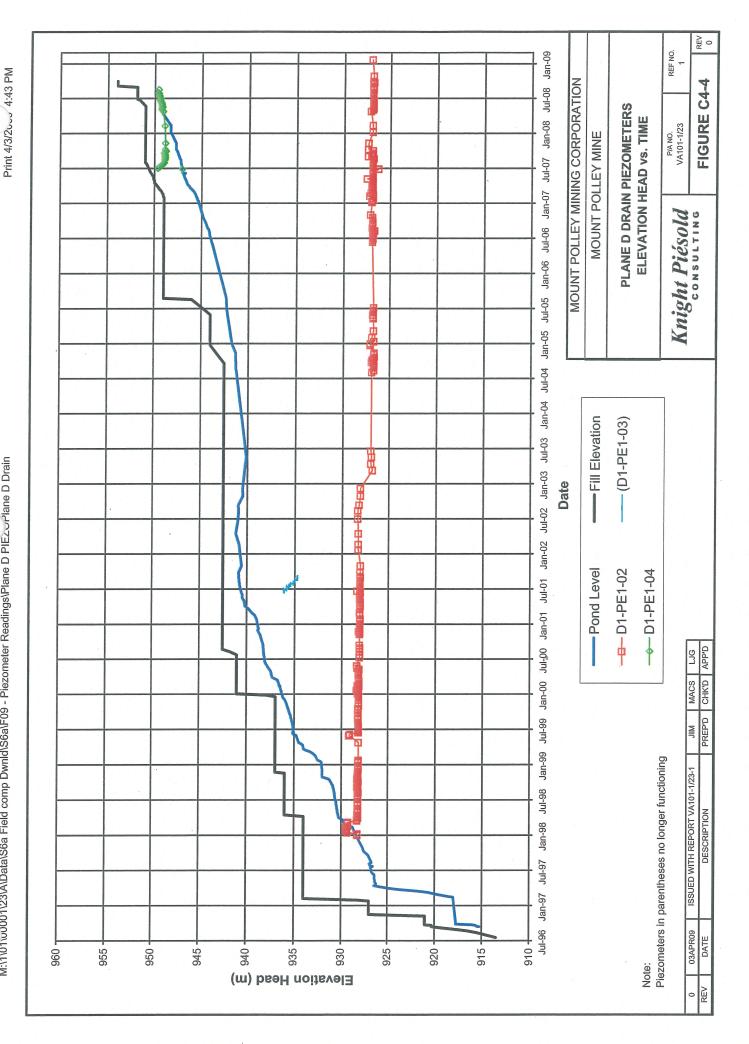
M:\1\01\cdot\cdot\01\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane H PIEZOPlane H h...

Sep-07 Mar-08 Sep-08 Mar-09 Sep-09 REV 0 REF NO. FIGURE C3-9 MOUNT POLLEY MINING CORPORATION PLANE I FILL PIEZOMETERS ELEVATION HEAD vs. TIME P/A NO. VA101-1/23 MOUNT POLLEY MINE Knight Piésold Mar-07 Sep-06 Mar-06 Mar-05 Sep-05 Fill Elevation 12-PE2-01 Date Sep-04 -Pond Level -X-12-PE2-02 Apr-04 JIM MACS LJG PREP'D CHK'D APP'D Oct-03 Apr-03 Note: Piezometers in parentheses no longer functioning Oct-02 ISSUED WITH REPORT VA101-1/23-1 Apr-02 DESCRIPTION Oct-01 Apr-01 03APR09 910 + DATE 096 955 945 940 925 920 915 950 935 930 Elevation Head (m) REV

Print. _____ 20095:33 PM

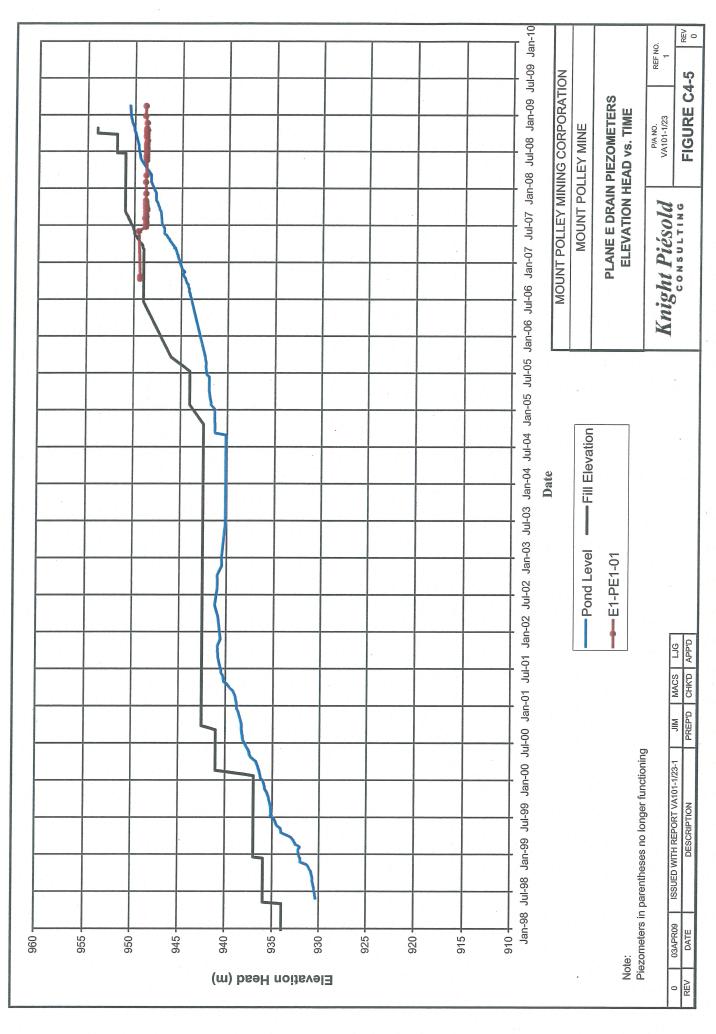
M:/11/0,....J01123/A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane | PIEZOPlane | Fin.


APPENDIX C4


DRAIN PIEZOMETERS

(C4-1 to C4-8)

M:\\\01\vvv01\23\A\Data\S6a Field comp Dwnld\S6a\F09 - Piezometer Readings\Plane A PIEZOPlane A Dr....


M:\\\0 اسبكا B PIEZOPlane B PIEZOPlane B كالانكامار\\0.00 العادمة B PIEZOPlane B كالانكار\\0.00 الك

M:\\\01 المارك\23\A\Data\S6a Field comp DwnId\\S6a\F09 - Piezometer Readings\Plane E PIEككاا

Print 4/3/2009 5:11 PM

Oct-09 REV 0 REF NO. Print 7/6/20099:13 AM FIGURE C4-6 Oct-08 Apr-09 MOUNT POLLEY MINING CORPORATION PLANE F DRAIN PIEZOMETERS **ELEVATION HEAD vs. TIME** P/A NO. VA101-1/23 MOUNT POLLEY MINE Apr-08 Knight Piésold Oct-07 Apr-07 Oct-06 Apr-06 Fill Elevation Oct-05 M:\1\0001\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane F Plane F Drain Oct-03 Apr-04 Oct-04 Apr-05 Date - Pond Level -A-F1-PE1-01 JIM MACS LJG PREP'D CHK'D APP'D Oct-02 Apr-03 0 03APR09 ISSUED WITH REPORT VA101-1/23-1

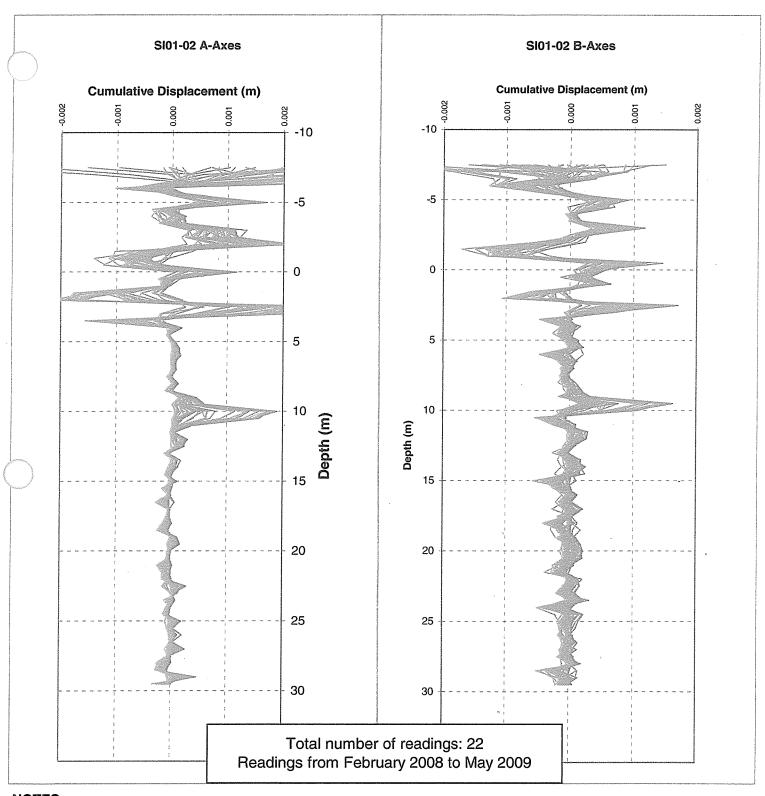
REV DATE DESCRIPTION Oct-01 Apr-02 Apr-01 Oct-00 910+ 915 . 096 955 950 945 940 935 930 925 920 Elevation Head (m)

Oct-09 REV 0 REF NO. _0095:29 PM Rev'd 31-Jan-08 MOUNT POLLEY MINING CORPORATION FIGURE C4-7 Apr-09 PLANE H DRAIN PIEZOMETERS ELEVATION HEAD vs. TIME P/A NO. VA101-1/23 MOUNT POLLEY MINE Oct-08 Apr-08 Knight Piésold Oct-07 Apr-07 Oct-06 Apr-06 Apr-05 Oct-05 - Fill Elevation Date Oct-04 → (H1-PE1-01) -Pond Level Apr-04 JIM MACS LJG PREP'D CHK'D APP'D Oct-03 Apr-03 Oct-02 ISSUED WITH REPORT VA101-1/23-1 Piezometers in parentheses no longer functioning Oct-01 Apr-02 DESCRIPTION Apr-01 03APR09 910 + DATE 955 945 940 950 935 915 930 920 Elevation Head (m) 0 REV

Print.

M:\1\01 ----01\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane H PIEZOPlane H D.....

Sep-09 REV 0 REF NO. E: __0095:35 PM Rev'd: 31-Jan-08 FIGURE C4-8 MOUNT POLLEY MINING CORPORATION Sep-07 Mar-08 Sep-08 Mar-09 PLANE I DRAIN PIEZOMETERS ELEVATION HEAD vs. TIME P/A NO. VA101-1/23 MOUNT POLLEY MINE Knight Piésold Mar-07 Sep-06 Mar-06 Mar-05 Sep-05 - Fill Elevation Date Sep-04 - Pond Level ▲ 11-PE1-01 Apr-04 JIM MACS LJG PREP'D CHK'D APP'D Oct-03 Apr-03 Note: Piezometers in parentheses no longer functioning Oct-02 ISSUED WITH REPORT VA101-1/23-1 Apr-02 DESCRIPTION Oct-01 Apr-01 03APR09 910 + DATE 955 945 940 935 915 096 950 930 925 920 Elevation Head (m) REV 0


M:\1\01\0vv001\23\A\Data\S6a Field comp DwnId\S6a\F09 - Piezometer Readings\Plane I PIEZOPlane I Dram

APPENDIX D

INCLINOMETER DATA

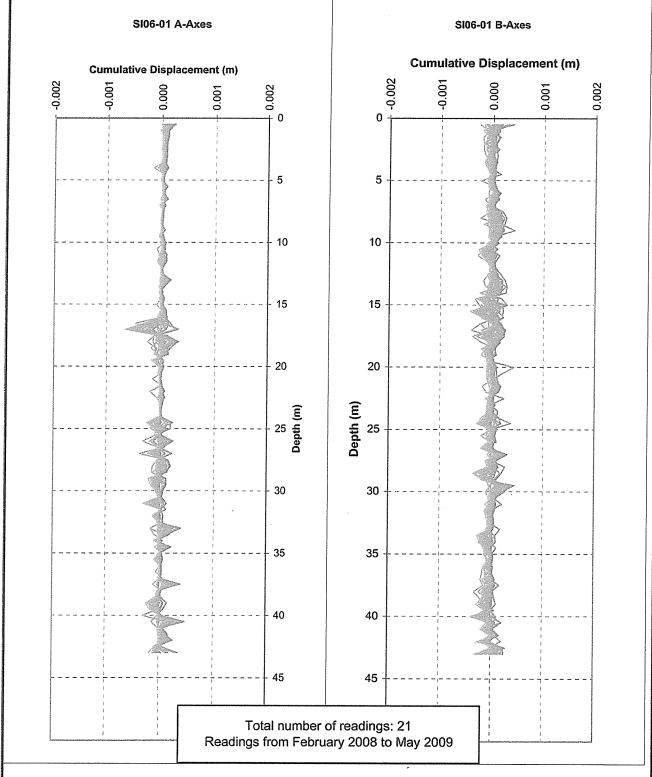
(Figures D-1 to D-4)

NOTES:

- 1. DISPLACEMENT IS CALCULATED BASED ON THE INITIAL DATA SET.
- 2. NEW DATA STARTED IN FEBRUARY 2007 AS A NEW PROBE WAS PURCHASED.
- DISPLACEMENT AT 10M DEPTH IS MONITORED ON A ZEKLY BASIS .

0	11May09	ISSUED WITH REPORT VA101-1/23-1	MACS	LJG	LJG
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

MOUNT POLLEY MINING CORPORATION


MOUNT POLLEY MINE

DOWN HOLE INCLINOMETER DISPLACEMENT SI01-02

Knig	K	el	1	P	i	é.	S	0	l	d	,
O	C	0	N	S	U	L	T	i	M	G	

P/A NO.	REF NO.
VA101-1/23	1

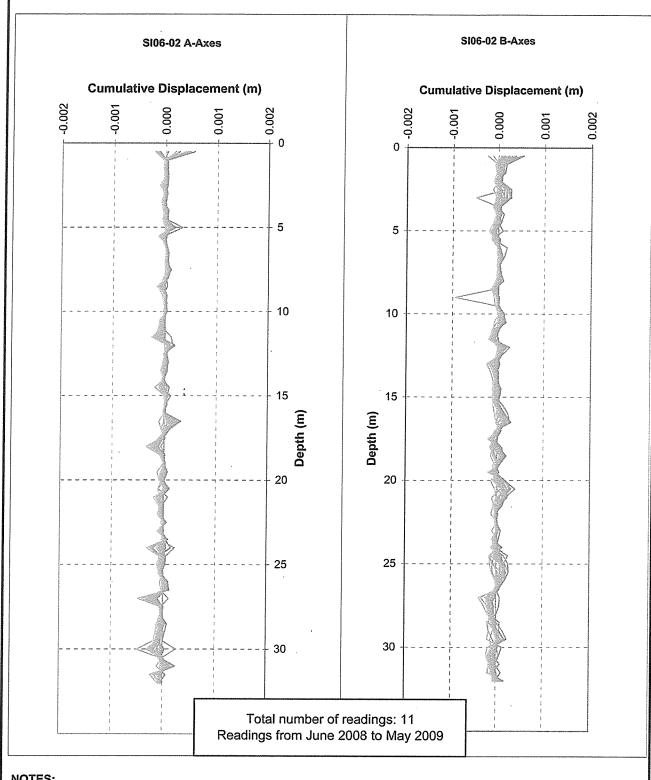
FIGURE D-1

NOTES:

- 1. DISPLACEMENT IS CALCULATED BASED ON THE INITIAL DATA SET.
- 2. NEW DATA STARTED IN FEBRUARY 2007 AS A NEW PROBE WAS PURCHASED.

MOUNT	POLLEY	MINING	CORPORATION
	MOUNT	POLLE	/ MINE

DOWN HOLE INCLINOMETER DISPLACEMENT SI06-01


Knight Piésold

P/A NO.	REF NO.
VA101-1/23	1
	D

 0
 11MAY09
 ISSUED WITH REPORT VA101-1/23-1
 JIM
 MACS
 LJG

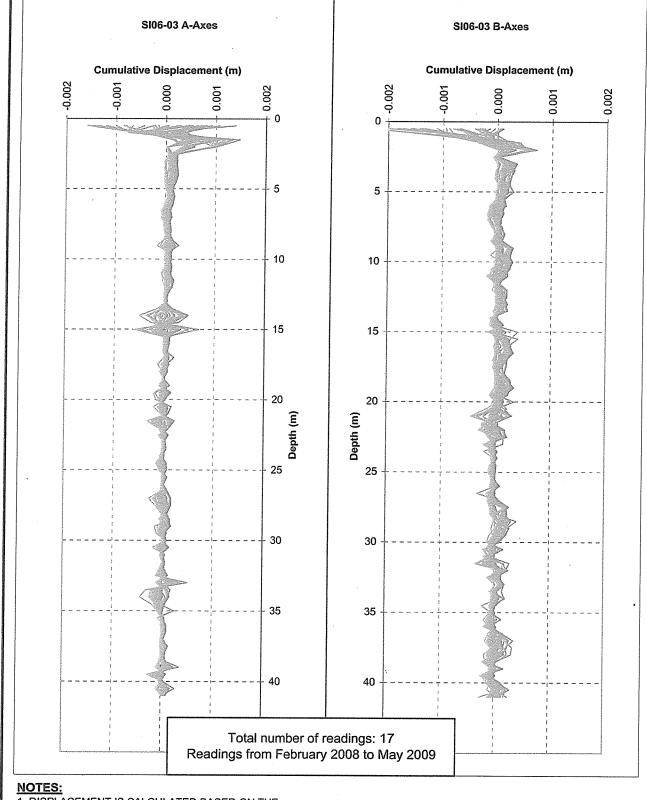
 REV
 DATE
 DESCRIPTION
 PREP'D
 CHK'D
 APP'D

FIGURE D-2

NOTES:

1. DISPLACEMENT IS CALCULATED BASED ON THE INITIAL DATA SET.

2. NEW DATA STARTED IN FEBRUARY 2007 AS A NEW PROBE WAS PURCHASED.


MOUNT POLLEY	MINING CORPORATION
MOUNT	POLLEY MINE

DOWN HOLE INCLINOMETER DISPLACEMENT SI06-02

Knight Piésold

P/A NO. REF NO. FIGURE D-3

0	11MAY09	ISSUED WITH REPORT VA101-1/23-1	JIM	MACS	LJG
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

- 1. DISPLACEMENT IS CALCULATED BASED ON THE INITIAL DATA SET.
- 2. NEW DATA STARTED IN FEBRUARY 2007 AS A NEW PROBE WAS PURCHASED.

MOUNT	POLLEY	MINING	CORPORA	TION
	NACH INIT		/ A #1A 1C	

MOUNT POLLEY MINE

DOWN HOLE INCLINOMETER DISPLACEMENT SI06-03

Knig	K	l	1	P	ìie	źs	O	rl	d
J					U				

P/A NO. VA101-1/23 REF NO. 1

FIGURE D-4 REV 0

0	11MAY09	ISSUED WITH REPORT VA101-1/23-1	JIM	MACS	LJG
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

Knight Piésold

APPENDIX E

PHOTOGRAPHS

(Pages E1 to E16)

PHOTO 1 – Mount Polley Mine Site with the Tailings Storage Facility in the background

PHOTO 2 – Mount Polley Mine Site with the Tailings Storage Facility in the foreground

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

PHOTO 3 - Placing Till (Zone S) on the Tailings Dam

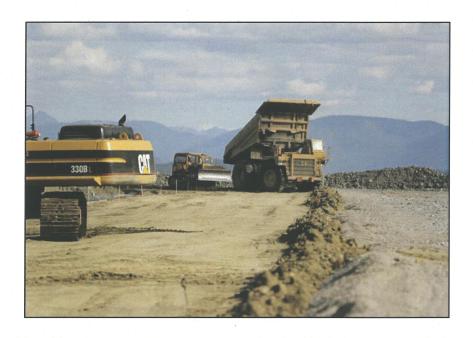


PHOTO 4 - Romoving Till (Zone S) from Borrow Area 2

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

PHOTO 5 - The new Perimeter Embankment Borrow Pit

PHOTO 6 – Placing Zone S till material with mine fleet Caterpiller 777's near the end of the construction period


MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

PHOTO 7 – Adding the 777's allowed for a second 'dozer roller team effectively doubling the till production rate

PHOTO 8 – Using the nuclear densometer to confirm field densities of Zone S material.

PHOTO 9 – Zone U sand Cell under construction decant box is shown in the background.

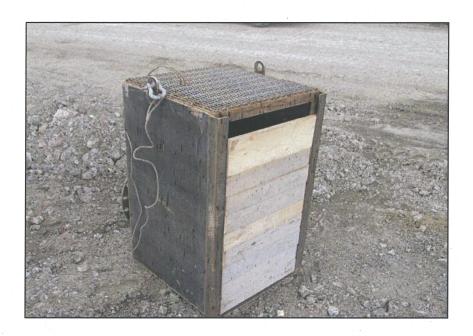


PHOTO 10 - Sand cell decant box.

PHOTO 11 - Sand cell decant box showing the drain opening

PHOTO 12 – Sand cell decant box. Note the control is at the entry to the box.

PHOTO 13 - Using pit waste rock to build Zone U.

PHOTO 14 – Moving the valve sled in preparation for sand cell construction.

PHOTO 15 - Placing Zone F filter material on the 1.5:1 downstream slope.

PHOTO 16 – Placing Zone F filter on the 2:1 upstream slope.

PHOTO 17 – Using a hoe to move the Zone F filter material into its final position.

PHOTO 18 – Compacting the modified design Zone T. This new design is much faster and easier to compact.

PHOTO 19 – Zone F Filter and Zone T transition material on the South Embankment.

PHOTO 20 – Zone C consists of Non Acid Generating (NAG) waste rock from the pits brought to the dam by mine fleet trucks.

PHOTO 21 – Zone C material is pushed into place by a D8 'dozer.

PHOTO 22 – Zone C lifts are kept to less than 2m.

PHOTO 23 – Adding material to the Main Embankment buttress.

PHOTO 24 – Zone FT on the South Embankment abutment.

PHOTO 25 – Zone FT material on the Perimeter Embankment abutment

PHOTO 26 – Piezometer Buckets prior to relocation.

PHOTO 27 – Constructing a sand pile for the piezometers with a rock armor.

PHOTO 28 – South Embankment toe drain concrete encasement.

PHOTO 29 - Main Embankment seepage pond sump.

PHOTO 30 - Perimeter Embankment toe drain flows.

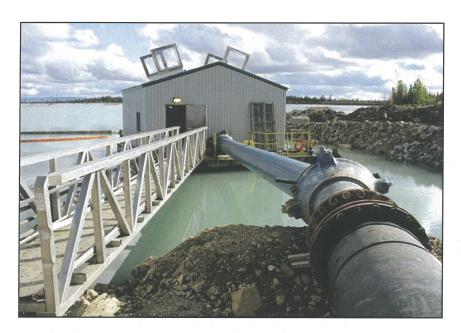


PHOTO 31 - TSF Reclaim Barge.

PHOTO 32 - Mount Polley Mine Tailings Storage Facility.

APPENDIX F

SITE INVESTIGATION DRILL LOGS

(Pages F1 to F11)

P	roje	ect:	MOUNT POLLEY MINE				ole No.					Page	1 of 1
			Mud Bay		Ir							Date Started:	May 1, 08
Drillir	-		Sonic Drill	,			Elevation:			<u>n</u>		e Completed: Logged by:	
_			Borrow Area				tal Depth:			m			
	oordin	ates:	5,819,445 N , 595,951 E			11	nclination:		-90	<u> </u>		Reviewed by:	LG
DЕРТН (ft)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	1	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	Uncon	EST DATA rected 'N' vs. depth (e) 0 60 80		NOTES
5 -			GLACIAL TILL Sandy SILT with some clay to CLAY & with some fine gravel with trace cobbles. Poorly graded with sub-round to subangular particles. Very dense. High plasticity. Moist. Massive. Brown to grey-brown.		0	8	KP08-1-1	11					
10 -													
15 -	5 -												
25 -													
30 -					0	8	KP08-1-2	"					
35 -	10 -												
40 -													
45 - 50 -	15 -												
55 -													
60 -							WD05 1 5						
65 -	20 -		LACUSTRINE SEDIMENT Clayey SILT. Poorly graded. Very dense. Moderate plasticity. Moist. Massive.		0		KP08-1-3	//					
							MC		MO	UNT	POLI	G CORPOI EY MINE For KP08-0	
Rev	/. - 0					Knig	ht	Pi	és	ole	Project N VA101-1/	o. Ref. No. R 23/A08-02318 FIGURE 1	

Rev0 Knight Piésold CONSULTING FIGURE 2	P	roje	ct:	MOUNT POLLEY MINE		D	rill H	ole No.	_KF	<u>80°</u>	-02	Page	1 of 1
Description Description		•					n-Situ	Sampler:				Started:	
Sample S	Drillin	ng Met	hod:	Sonic Drill									7
BE SELECTION DESCRIPTION Selection Se		Loca	ition:										Name of the last o
BE ALL STRING SEDIMENT SAND with some day. Poorty graded. Darise, Low plants, Val. Massive. Brown. From 11 h 16 ft on day content diagram. From the 16 ft on day content diagr	C	oordin	ates:	5,819,292 N , 596,125 E	<u> </u>	=_	lr	clination:		-90	Reviev	ved by:	LG
GLACUATRINE SEDIMENT Solvential Teach of the processing of the process of the pro	DЕРТН (ft)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	Uncorrected 'N' values vs. depth		NOTES
SAND with some clay. Poorty graded. Dense. Low plasticity. Wet. Massive. Brown. From 11 to 14.6 m clay content drops out and sand becomes coarser and drier. MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE Overburden Log For KP08-02 Knight Piésold Project No. Ref. No. Ref. No. Ref. No. 10 Project No. 1	5 - 10 - 15 - 20 - 25 -			GLACIAL TILL CLAY with trace medium grained sand & trace gravel & trace cobbles. Poorty graded with sub-rounded to sub-angular particles. Very dense. Moderate to high plasticity. Moist. Massive. Brown. Zone of grey-brown, very hard, dry to moist till		0 0		KP08-2-1 SPT1 KP08-2-2	// 44/15/36	51			
MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE Overburden Log For KP08-02 Knight Piésold CONSULTING FIGURE 2	40 -	15	-	SAND with some clay. Poorly graded. Dense. Low plasticity. Wet. Massive. Brown. From 11 to 14.6 m clay content drops out and									
M:\1\01\00001\23\A\DATA\BORROW AREA SITE INVESTIGATION - MAY 2008\GINT\BORROW_AREA_SI_JOSIE.GPJ F-2 Date Revision F-2	Re	ev(0					Kni	ght	M veri	OUNT POLLEY purden Log For iésold	MINE KP08 Project VA101-	-02 No. Ref. No. Rev. 1/23/A08-02318

I	Orilling ng Mei	g Co: thod:	MOUNT POLLEY MINE Mud Bay Sonic Drill			n-Situ	lole No. Sampler: Elevation:		920 ı	n	Da	Pag Date Started ate Completed Logged b	d: May 1, 08 d: May 2, 08
Co			5,819,414 N , 596,269 E		_		nclination:		20.7 -90			Reviewed b	
DEPTH (ft)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	Unco	rest DA prected es vs. dep (e) 40 60 8	oth	NOTES
5 -			GLACIAL TILL Sandy SILT with some clay to CLAY and trace fine gravel. Poorly sorted with sub-rounded to sub-angular particles. Very dense. High plasticity. Moist. Massive. Upper 1.2 m is brown in color.		0		KP08-4-2 KP08-4-1	<i>II</i>					
10 - 15 -	5 -				0		KP08-4-3	<i>II</i>					
20 - 25 -													
30 - 35 -	10 -				0	•	KP08-4-4	//					
10 - 15 -					0		SPT1	50//	50		•		
50 - 55 -	15 -		SAND & GRAVEL Medium to coarse SAND & GRAVEL with trace cobbles. Moderate grade with sub-rounded to sub-angular particles. Very dense. Low plasticity. Wet. Massive.		0		KP08-4-5	II II					
š0 -													
35 - 70 -	20 -		LACUSTRINE SEDIMENT Fine SAND. Poorly sorted. Very dense. Low plasticity. Wet. Massive.		0	*	KP08-4-6 SPT2	// 50//	50				
					1			O ₁	MC verb	UN' urde	T PO en Lo	IING CORP LLEY MINE og For KP0	: 8-04
Rev	/ 0		DATA\BORROW AREA SITE INVESTIGATION - MA			1	Knig	CU	M 2	UL		d Project	et No. Ref. No. R I-1/23/A08-02318 FIGURE 3 F-3 Date Rev

	roje		MOUNT POLLEY MINE Mud Bay				ole No. Sampler:	<u>K</u> I			- Г	Page _ Date Started: _	1 of 1 May 2, 08
	Orilling		Mud Bay Sonic Drill				Elevation:		937 n			Completed: _	May 2, 08
шП	ig Met						tal Depth:		13.1			Logged by:	1
C	coce cordin		5,819,131 N , 596,297 E				nclination:		-90	· · ·	- F	Reviewed by: _	The same of the sa
$\overline{}$	JOIGH	T	5,010,101 N , 600,201 E	(%)	8			<u> </u>	T				
טברוח (וו)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (9	SAMPLE RECOVERY (9	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	SPT TES Uncorre values v	cted 'N' s. depth	N	OTES
5 -			GLACIAL TILL Sandy SILT w/ some clay to CLAY with some coarse gravel & trace cobbles. Poorly sorted with sub-rounded to sub-angular particles. Very dense (cored samples are extremely hard). Moderate to high plasticity. Moist. Massive.		0	*	KP08-6-1 KP08-6-2	// //					
	5 -	+ + + + +	LACUSTRINE SEDIMENT SILT & CLAY with some fine sand. Poorly sorted. Dense. Low plasticity. Wet. Massive.		0	*	KP08-6-3	//					
0 -			SAND AND GRAVEL GRAVEL & Coarse SAND with some clay. Moderate grade with sub-rounded to sub-angular particles. Dense. Moderate plasticity. Moist. Massive. LACUSTRINE SEDIMENT		0	*	KP08-6-4 KP08-6-5	"					
5 -		⁺ ⁺ - ₋ ⁺ - ₋ ⁺	Fine SAND & SILT with some clay. Poorly sorted. Dense. Low plasticity. Upper half of interval is wet, lower half is dry. Stratified, 6" clay seam is present in center of interval, dividing wet and dry portions of unit.										
0 -	10	.+ , .+ , .+ , .+ , .+ ,											
35 -			SAND AND GRAVEL GRAVEL & Coarse SAND with some clay. Moderate grade with sub-rounded to sub-angular particles. Dense. Moderate plasticity. Moist. Massive.		0	•	KP08-6-6	11					
40 - 45 -													
								C	M(verb	OUNT urde	POL 1 Log	NG CORPOR LEY MINE I For KP08-0)6
D -		n				_	Knig	;ht	P	iés	ol	Project No VA101-1/	b. Ref. No. Re 23/A08-02318 IGURE 4
Ke	V	U	NDATA\BORROW AREA SITE INVESTIGATION - M	A \$7.00	00/01	1		CU	M 2	UL.	IN	G 1	F-4 Date Rev

	roje Drilling		MOUNT POLLEY MINE Mud Bay				lole No.					Pag Date Started	
			Sonic Drill		''		Elevation:		918 ו		 Da	ate Completed	
•	-		Borrow Area				tal Depth:		17.7	m		Logged by	
C			5,819,276 N , 596,451 E			lı	nclination:		-90			Reviewed by	y: LG
DEPTH (ft)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	Unco value	EST DA rrected ' s vs. dep () 10 60 8	N' oth	NOTES
5 -			GLACIAL TILL Sandy SILT with some clay to CLAY & trace gravel. Poorly sorted with sub-rounded to sub-angular particles. Very dense. High plasticity. Moist. Massive. Brown at the top of the unit, gradually changes to grey till by 4.6 m.		0	•	KP08-8-1	//				·	
10 -					0	•	KP08-8-2	"					
5 -	5 -				0	•	KP08-8-3	<i>"</i>					
25 −									And a few sections of the section with the few sections that the section of the s				
:0 - :5 -	10 -				0		KP08-8-4						
·0 -		+ - + - + - + - + - + - + - + - + - + -	LIGHT BROWN LACUSTRINE SEDIMENT SILT with trace clay. Poorly sorted. Very dense. Low plasticity. Wet. Massive. Grain sizes increase with depth into SAND with some gravel with sub-rounded to sub-angular particles.		0		SPT1	50//	50				
5 - 50 -	15 -	+ - - + - - + - - + -			0	•	KP08-8-5 KP08-8-6						
55 -		+ + + - + + + - + +			J		14, 00-0-0	"					
50 –		+ -			0	>	SPT2	50//	50		•		
							MC		MO	INU	POI	ING CORP LEY MINE g For KP08	: 3 - 08
Rev	r0					-	Knig	t, ht	P	és	ol	d Project VA101	t No. Ref. No. R -1/23VA08-02318 FIGURE 5

	roje		MOUNT POLLEY MINE				ole No.	KI	208	-09		Page _	1 of 1 May 1, 08
	Drilling		Mud Bay Sonic Drill				Sampler: Elevation:		921 r	n		Date Started: _ e Completed: _	May 1, 08
חוווח	g iviet Loca		Sonic Drill Borrow Area				al Depth:		14.6			Logged by:	GM
Co	ordina		5,819,617 N , 596,070 E		_		clination:		-90			Reviewed by:	
DEPTH (ft)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	Uncor	EST DATA rected 'N' s vs. depth ()		IOTES
5 -			GLACIAL TILL Sandy SILT with some clay to CLAY with trace fine gravel & trace cobbles. Poorly sorted with sub-rounded to sub-angular particles. Very dense. High plasticity. Moist. Brown. Stratified with 10-12" thick fine sand lenses at 4.3 m & 7 m.		0	X	SPT1	50//	50		•		
5 -	5 -				0	•	KP08-9-1	//					
0 -	10 -	+ + + + + + + + + + + + + + + + + + + +	MEDIUM GREY LACUSTRINE SEDIMENT Clayey SILT with trace coarse sand. Poorly sorted with sub-rounded to sub-angular particles. Very dense. Low to moderate plasticity. Moist, shows dilatency when jarred. Massive.		0	•	KP08-9-2	//					
5 -		+ + + + + + + + + + + + + + + + + + + +											
50 -	15	+++++++++++++++++++++++++++++++++++++++			0	>	SPT2	50//	50		•		
	1	1			<u> </u>		M		M	OUN	T POL	ING CORPOI LLEY MINE g For KP08-0)9
Re	v()	NDATA BORROW AREA SITE INVESTIGATION - N				Kniş	ghi	P	ié	sol	Project N VA101-1	o. Ref. No. Ref. No. Ref. No. Ref. No. Ref. No. Ref. Per. Ref. Ref. Date Rev.

	•		MOUNT POLLEY MINE Mud Bay				ole No. Sampler:				[Page Date Started:	
Orillin	_						Elevation: tal Depth:		924 ı 8.5		Date	Completed: Logged by:	
Cc			5,819,744 N , 595,835 E				nclination:		-90		F	Reviewed by:	
DEPTH (ft)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION Loss of Core	DRILL RUN RECOVERY (%)		SAMPLES	SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	Uncor	EST DATA rected 'N' vs. depth		NOTES
5 -		p	SAND AND GRAVEL Medium SAND & coarse GRAVEL. Moderately		0	×	SPT1	50//	50				
10 -			well sorted with sub-rounded particles. Very dense. Low plasticity. Moist to 5.5 m, lower 3 m is dry. Massive. Zone of fine to medium SAND from 2.4 to 5.5 m.										
5 -	5 -				0	*	KP08-11-1	//					
20 -													
30 –		9					M		MC	UNT	POL	NG CORPOR	
	/ 0						Knig					For KP08-1 Project No VA101-1/2	

Р	roje	ct:	MOUNT POLLEY MINE		D	rill H	ole No.	KI	P08	-12	Pa	age <u>1 of 1</u>
l .	Drilling		Mud Bay				Sampler:				Date Start	ed: Apr 30, 08
Drillin	g Met	hod:	Sonic Drill				Elevation:				Date Complet	
	Loca		Borrow Area				tal Depth:			m		by: GM
Co	ordina	ates:	5,819,605 N , 595,741 E		 _	lr	nclination:		-90	Γ	Reviewed	by: LG
DEPTH (ft)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)		SAMPLES	SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	SPT TEST Uncorrectivalues vs. (•) 20 40 60	ed 'N' depth	NOTES
5 - 10 - 15 - 20 - 25 - 30 -	5 10 10		GLACIAL TILL Sandy SILT with some clay to CLAY, with trace gravel from 4 m and down. Poorly sorted with sub-rounded to sub-angular particles. Very dense. High plasticity. Moist. Massive. Brown for the upper 4 m and changes to grey for the rest of the unit.		0 0	¥	KP08-12-1 SPT1 SPT2 KP08-12-2	// 60// 50// //	50			
40 - 45 - 50 - 55 -	15 -	+ + + + + + + + + + +	LACUSTRINE SEDIMENT Sity SAND w/ some gravel and trace cobbles. Poorly sorted with sub-rounded particles. Very dense. Low plasticity. Dry. Massive. Brown. From 16.8 to 17.7 m the sand content decreases and the clay content increases. From 17.7 to 23.8 m the clay content decreases.									
65 - 65 - 70 -	20											
80 -	25	.+ + + +										
85 Revenue 85 Revenue	-							O	Me verb	OUNT F ourden	OLLEY MII Log For KF	P08-12
							Kniş	ohi	P	iési	Pr VA	oject No. Ref. No. Rev 101-1/23/A08-02318
Re	v()				1		CO	NS	ULT	ING	FIGURE 8
M:\1\0	1\0000	01\23V	NDATANBORROW AREA SITE INVESTIGATION - M	AY 20	08\GiI	VT/BC	RROW_ĀĪ	KEA_SI	_JOS	ı≞.GPJ		F-8 Date Revis

	-		MOUNT POLLEY MINE Mud Bay				Hole No. Jampler:			3-14 Page 1 of 29,06 Date Started: Apr 29, 06
	_		Sonic Drill				Elevation:			m Date Completed: Apr 30, 0
	Loca	ition:	Borrow Area			To	otal Depth:		20.1	m Logged by: GM
Co	ordin	ates:	5,819,739 N , 595,544 E			1	nclination:		-90	Reviewed by: LG
DEPTH (ft)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	SPT TEST DATA Uncorrected N' values vs. depth (a) 20 40 60 80 NOTES
5 -			GREY GLACIAL TILL Sandy SILT with some clay to CLAY & trace gravel. Poorly sorted with sub-rounded to sub-angular particles. Very dense. High plasticity. Moist. Massive. Upper 5 m is brown, rest of the unit is grey.			X	SPT1	50//	50	
10 -					0	><	SPT2	17/27/32	59	
15 -	5 ~				0	F	SPT3 KP08-14-1	18/42/46 //	88	
25 -					0	X	SPT4	50//	50	
30 -	10 -								According wavened in district the following of the following district to the following of t	
35 - 10 -					0	*		// 50//	50	
15 -					0	×	SPT6	50//	50	
50 -	15 -		·							
55 - 50 -					0	*	SPT7	50//	50	
35 -	20 -									
70 -										
		<u> </u>	<u>L</u>	<u> </u>	<u> </u>		M		MC	LLEY MINING CORPORATION DUNT POLLEY MINE ourden Log For KP08-14
Do	· 0					-	Knig	ht	P	iésold Project No. Ref. No. VA101-1/23/A08-02318 FIGURE 9

Pi	roje	ct:	MOUNT POLLEY MINE		D	rill H	ole No.	_KF	208	-15	-	Page		1
	rilling	-	Mud Bay	······	lr		Sampler:				-	Date Started:	Apr 30,	
rilling	-	-	Sonic Drill				Elevation:		925 1		_ Date	Completed:	Apr 30,	80
	Loca	-	Borrow Area				tal Depth:		20.7 -90			Logged by: Reviewed by:	GM LG	
Co	ordina	ates:	5,819,880 N , 595,608 E			1r	clination:			T T		Reviewed by.	LG	
DEP I Η (π)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	(cted 'N' s. depth	,	NOTES	
5 -			GLACIAL TILL Sandy SILT with some clay to CLAY & trace fine gravel. Poorly sorted with sub-rounded to sub-angular particles. Very dense. High plasticity. Moist. Massive. Brown.		0		KP08-15-1 SPT1	// 16/18/50	68		•			
5 -	5 -	+ + + + + + + + + + + + + + + + + + +	LACUSTRINE SEDIMENT Clayey SILT with some medium to coarse gravel. Poorly sorted with sub-rounded to sub-angular particles. Very dense. High plasticity. Wet. Massive.		0		KP08-15-2 KP08-15-3	"						
0 -			GLACIAL TILL. Sandy SILT with some clay to CLAY & some fine gravel. Poorly sorted with sub-rounded to sub-angular particles. Very dense. High plasticity. Moist. Massive. Grey.		ō		SPT2	50//	50					
,]	10 -													A Company
5 -		+	SAND AND GRAVEL Medium to coarse SAND with some fine to coarse gravel. Poorly sorted with sub-rounded to sub-angular particles. Very dense. Low		0		KP08-15-4	//						
5 -		===	plasticity. Moist. Massive. Layer of GLACIAL TILL from 11.6 to 11.9 m. LACUSTRINE SEDIMENT Fine SAND & SILT & CLAY with trace coarse gravel & trace cobbles. Poorly sorted with sub-rounded to sub-angular particles. Dense.											
0 -	15 -		Low plasticity. Moist. Massive. SAND AND GRAVEL Fine to medium SAND with coarse gravel and trace cobbles. Poorly sorted with sub-rounded to sub-angular particles. Dense. Low plasticity. Moist. Massive.	The state of the s										
0 -			Becomes better graded and coarse particle content increases with depth.											
5 -	20 -													
70 –							M	IOUNT				NG CORPO	RATION	
								O				LEY MINE For KP08-	15	
							Kni							R

Drilling Co:	ect:	MOUNT POLLEY MINE		C	rill H	lole No.	K	P08	<u>-16</u>	Page _	1 of	
	Drilling	g Co:	Mud Bay		ا	n-Situ	Sampler:			Da	ate Started:	May 2, 08
Drilli	-		Sonic Drill				Elevation:		930 ı		Completed: _	
			Borrow Area				tal Depth:		11.6		Logged by:	
С	oordin	ates:	5,819,663 N , 595,778 E	T =		~~~~~	nclination:		-90	Re	eviewed by:	LG
DEPTH (ft)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	SPT TEST DATA Uncorrected 'N' values vs. depth (a) 20 40 60 80	N	OTES
5 -			GLACIAL TILL. Sandy SILT with some clay to CLAY & trace gravel. Poorly sorted with sub-rounded to sub-angular particles. Very dense. High plasticity. Moist. Massive. Brown.		Ű	*	KP08-16-1	II				
10 -				data interessed	0		KP08-16-2	//				
15 -	5 -		SAND AND GRAVEL SAND with some gravel. Moderately well sorted with sub-rounded to sub-angular particles. Dense. Low plasticity. Dry. Stratified with seam of sandy clay with cobbles at 5 m to 5.5 m. Zone of mod. to highly plastic clay and silt and sand from 6.1 to 9.1 m.		0	*	KP08-16-2	11				
20 -			Sand Holli C. F to S. F H.		0	*	KP08-16-3	//				
					0	*	KP08-16-4	//				
25 –												
30 –	10 -				0	*	KP08-16-5	//				
35 -												
40 -							MO		MO	LEY MINING UNT POLLE	Y MINE	
							#7 •		/erbu	ırden Log F	or KP08-16 Project No.	Ref. No. F
	r 0					- 1	Knig	nt	H	ésold	VA101-1/23	WA08-02318 JURE 11
		1\23\A\[DATA\BORROW AREA SITE INVESTIGATION - MA	Y 2008	(GIN	T\BOF	ROW_ARE	A_SI_	JOSIE	.GPJ		-11 Date Re